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ABSTRACT 

 The studies comprising this dissertation were designed to investigate the synaptic 

organization of norepinephrine and opioid system in the anterior subdivision of the 

basolateral nucleus of amygdala (BLa) in rats. Light and electron microscopy were 

combined with immunohistochemistry to determine the synaptic incidence and 

postsynaptic targets of noradrenergic axon terminals, to localize mu opioid receptors at 

the ultrastructural level, and to determine whether there is convergence of norepinephrine 

inputs and enkephalin inputs in the BLa.  It was determined that about half of the 

norepinephrine inputs formed synapses in the BLa and the main postsynaptic targets were 

small caliber CAMK+ dendritic shafts and spines of pyramidal cells in the BLa. It was 

determined that MOR+ profiles were found in both pre and postsynaptic profiles.  The 

most frequent labeled structures were small caliber dendrites and terminals. Both 

symmetrical and asymmetrical synapses were formed by MOR+ terminals, but the 

asymmetrical ones were more commonly observed in the BLa. MOR+ terminals were 

mainly targeted spines and small distal dendrites. It was determined that there was very 

limited (11%) convergence between ENK+ and norepinephrine terminals. These studies 

will contribute to a better understanding of how the noradrenergic and opioid systems 

affect BLa neural activity, which is essential to unravel the underlying mechanisms of 

memory modulation. 
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CHAPTER 1 

INTRODUCTION 

It is well known that emotionally arousing experiences tend to be well remembered. 

Emotional memory consolidation is a well-organized, highly adaptive phenomenon that 

helps us to remember important information and thus is critical for our survival 

(Roozendaal et al., 2009). Intense or chronic exposure to the stressful events can create 

traumatic memories which lead to mood and anxiety disorders such as post-traumatic 

stress disorder (PTSD) (Roozendaal et al., 2009, Goodman et al., 2012).  

Considerable evidence from animal and human studies has found that the memory 

consolidation effects of the amygdala are selectively mediated by the basolateral 

amygdala (BLA), especially the anterior basolateral nucleus (BLa) (McGaugh, 2004). 

The BLA exerts its memory modulation function via regulating complex interactions 

among several neuromodulatory systems (McGaugh, 2004). A large amount of evidence 

supports that norepinephrine (NE) serves as a key player, and that the opioid system 

could affect memory consolidation by influencing NE release in the BLA (Quirarte et al., 

1998, Ferry and McGaugh, 1999, McGaugh, 2004) . However, the exact circuits of the 

NE and opioid system are not clear.  

Knowledge of the exact synapses and circuits of NE and opioids is critical for 

understanding how they affect each other and thus affect BLA neural activity which is 

essential to unraveling the underlying mechanism of memory modulation and identifying 

the novel drug targets for related diseases such as PTSD. 
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1.1 SIGNIFICANCE OF THE BLA IN MEMORY CONSOLIDATION 

The BLA has reciprocal connections with the medial temporal lobe memory 

system which consists of the hippocampus and adjacent cortex (Pitkanen et al., 2000) . 

The BLA is also the major nucleus in the amygdala projecting to the striatum 

(McDonald, 1991, 2003). Through these connections, it modulates memory consolidation 

by enhancing striatal-dependent habit memory and modulating hippocampal-dependent 

cognitive memory during stress or anxiety situations, which may underlie some aspects 

of PTSD symptoms (Goodman et al., 2012). In fact, results from previous studies 

suggested that among the numerous nuclei in the amygdala, the BLa is the one selectively 

involved in memory consolidation (Tomaz et al., 1992, Parent and McGaugh, 1994, Da 

Cunha et al., 1999, McGaugh and Izquierdo, 2000). The exact circuit for memory 

consolidation is not clear, but extensive evidence has shown that the influence of the BLa 

in the memory consolidation involves interactions of several neuromodulatory systems 

including neurotransmitters and stress hormones (McGaugh, 2004).  Specifically, 

noradrenergic, cholinergic, glucocorticoid and dopaminergic systems have been found to 

enhance memory consolidation (Lupien and McEwen, 1997, Hatfield et al., 1999, Power 

and McGaugh, 2002, McGaugh, 2004), while GABA and opioid peptides appear to block 

the consolidation by inhibiting the effects of the positive modulators (Quirarte et al., 

1998, Hatfield et al., 1999). Taken together, the effects from these different 

neuromodulatory systems converge in affecting noradrenergic and muscarinic cholinergic 

activation (McGaugh, 2004). Knowledge of the synaptic organization of these 

neuromodulatory systems in the amygdala will be critical for understanding the 

underlying mechanisms of memory consolidation, and how these circuits may be 

disrupted in the disorders of emotional memory, such as PTSD. 
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1.2 NOREPINEPHRINE SYSTEM 

The Norepinephrine (NE) system is a widespread system innervating virtually the 

entire central nervous system (Berridge and Waterhouse, 2003). Because of its extensive 

distribution, the NE system is involved in multiple brain functions, such as attention, 

arousal, vigilance, memory, and pain (Berridge and Waterhouse, 2003). Most of the 

noradrenergic neurons in the brain are concentrated in the locus ceruleus (LC), which 

provides the primary source of the noradrenergic innervation for hippocampus, neocortex 

and amygdala (Berridge and Waterhouse, 2003). As a catecholamine, NE along with 

dopamine (DA) and epinephrine (E) are sequential products from the same biosynthetic 

pathway beginning with dietary tyrosine (Nestler EJ, 2001). Tyrosine is hydroxylated by 

the enzyme tyrosine hydroxylase (TH) to form dihydroxyphenylalanine (Dopa). TH is the 

rate–limiting enzyme in the catecholamine synthesis. Then Dopa is converted into DA by 

an enzyme which also exists in dopamine neurons. DA is converted into NE by the 

dopamine-β-hydroxylase (DBH), which is only expressed in NE and E neurons. The 

major way of terminating NE function is by reuptake into the neuronal terminal via NE 

transporters (NET) (Nestler EJ, 2001). NE is catabolized by monoamine oxidase and 

catechol-O-methyltransferase (Nestler EJ, 2001). 

NE receptors belong to the G-protein-coupled receptor (GPCR) family and they 

can be divided into two types, α and β adrenoceptors, both of which can be further 

divided into numerous subtypes with different affinity and response for NE and E 

(Nestler EJ, 2001). Among them, all β receptors are Gs-coupled, leading to the activation 

of cyclic adenosine monophosphate (cAMP) synthesis and thus triggering the protein 

kinase A pathway (Nestler EJ, 2001). Most α1 receptors are Gq-coupled, which trigger 
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the phosphatidylinositol cascade and have various effects on neuronal excitability 

(Nestler EJ, 2001). α2 receptors are generally coupling with Gi, causing inhibition effects 

in most neurons, thus they mainly serve as autoreceptors (Nestler EJ, 2001).  

1.3 OPIOID SYSTEM 

Endogenous opioid peptides including endorphin, enkephalin (ENK) and 

dynorphin are derived from three peptide precursors, proopiomelanocortin, proenkephalin 

and prodynorphin, respectively (Stefano et al., 2000, Drolet et al., 2001). As 

neuropeptides, endogenous opioids are synthesized in the cell body and then transported 

to axon terminals where they are released. Opioids are synthesized as large precursors 

(see above) and then undergo complex posttranslational processes (Nestler EJ, 2001). 

Unlike small-molecule neurotransmitters such as glutamate and catecholamines, which 

are packaged in small synaptic vesicles, opioids are packed in large dense core vesicles. 

Similar to other neuropeptides, opioids tend to be released by sustained neuronal activity 

and can diffuse a long distance after release. 

Endogenous opioid peptides exert their effects via three major types of G-protein 

coupled receptors: mu (MOR), delta (DOR) and kappa (KOR), which are coupled to the 

Gi/Go family of G proteins (Drolet et al., 2001). Activation of these receptors inhibits 

adenylyl cyclase and modulates membrane conductance of calcium and potassium, 

leading to inhibitory influences upon neuronal activity (Nestler EJ, 2001). MOR is the 

most abundant opioid receptor in the BLA (Mansour et al., 1987, Ding et al., 1996). 

Opioid peptides do not bind exclusively to the receptor for which they have highest 

affinity. For example, enkephalin has the greatest affinity for DOR, but it also binds to 

MOR with high affinity. 
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1.4 CLINICAL SIGNIFICANCE OF THE AMYGDALA IN PTSD 

Post Traumatic Stress Disorder (PTSD) is an anxiety disorder triggered by 

exposure to traumatic experiences such as war, disaster, terrorism, motor vehicle 

accidents and violence (Parsons and Ressler, 2013). Although the prevalence of the 

PTSD is only 6.8% in the general population, it is much higher (20-40%) for people with 

unexpected trauma experience such as crime victims and disaster survivals, or people 

with rescue or war-related occupations, for example firefighter, policemen and soldiers 

(Javidi and Yadollahie, 2012).Thus, PTSD is the fourth most common psychiatric 

diagnosis (Parsons and Ressler, 2013).  Around 84% of PTSD patients have comorbid 

situations like alcohol and/or drug abuse, major depressive disorder and other anxiety 

disorders (Javidi and Yadollahie, 2012). 

 The amygdala is the major brain area involved in fear-related anxiety disorders 

including PTSD (LeDoux, 2000, Goodman et al., 2012, Pitman et al., 2012) . The 

findings from neuroimaging studies have shown increased activity of the amygdala in 

PTSD patients. (Liberzon et al., 1999, Vermetten et al., 2007, Hughes and Shin, 2011) 

Moreover, amygdala activation has been found to positively correlate with PTSD 

symptom severity (Rauch et al., 2000, Pissiota et al., 2002, Bryant et al., 2005, 

Protopopescu et al., 2005, Dickie et al., 2008, Brunetti et al., 2010) and decreased 

amygdala activity is probably related to the resilience to PTSD development after trauma 

exposure (Britton et al., 2005, Osuch et al., 2008). The pathological mechanism of PTSD 

is not very clear. It is believed that the over-consolidation of traumatic memory due to 

dysfunction of amygdala might contribute to its development and persistence (McGaugh, 

2004, Goodman et al., 2012, Pitman et al., 2012, Parsons and Ressler, 2013). Better 
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understanding of the neuronal circuitry of the amygdala involved in memory 

consolidation may help us to further understand PTSD pathology and provide valuable 

information for exploring novel treatment or intervention approaches.  
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CHAPTER 2 

FUNCTIONAL NEUROANATOMY OF AMYGDALA 

The amygdala is an almond-shaped brain nuclear group located in the anteromedial part 

of temporal lobe (LeDoux, 2000). It is a heterogeneous structure consisting of several 

nuclei, each of which has distinctive neuron types, neurochemical features and 

connections (McDonald, 2003). Although the amygdala is a small nuclear complex, it has 

extensive connections between its own different nuclei and also with numerous brain 

areas (McDonald, 2003). Through these connections, the amygdala produces appropriate 

behavioral responses to salient sensory stimuli and emotion arousing events in the 

external world and it is a key center for emotional memory (LeDoux, 2000, Millan, 2003, 

Sah et al., 2003, McGaugh, 2004). Studies in rats, cats and primates are in close 

agreement about the connections of nuclei which are most relevant to fear learning 

including the lateral, basolateral and accessory basal nuclei (LeDoux, 2000, McDonald, 

2003).  

Most of  the amygdala nuclei do not have clear borders and the nomenclature for 

these nuclei is not consistent among different groups (McDonald, 1998). However, it is 

customary to divide the amygdala nuclei into three major groups based on their 

anatomical and functional characteristics:  the basolateral nuclear group, the cortical 

nuclear group and the centromedial nuclear group (McDonald, 2003). Besides, there are 

three additional nuclei composing the remaining parts of the amygdala, including, the 
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amygdalohippocampal area, the anterior amygdala area, and the intercalated cell nuclei 

(ITC) (McDonald, 1998).   

2.1 NUCLEI AND CONNECTIONS  

2.1.1 BASOLATERAL NUCLEAR GROUP 

The basolateral nuclear complex of the amygdala contains three main nuclei: 

lateral, basolateral and basomedial nucleus (which are often referred to together as the 

basolateral complex (BLC)) (Sah et al., 2003).  The BLC receives robust sensory inputs 

from the cerebral cortex and thalamus (LeDoux et al., 1984, McDonald, 1998) and it has 

reciprocal connections with temporal lobe memory system (Pitkanen et al., 2000). The 

BLC also have connections with the basal ganglia and basal forebrain.  

The lateral nucleus (LA)  is the principle recipient of afferents from sensory 

neocortex in the BLC (Pitkanen and Amaral, 1991). It receives dense fibers from 

unimodal sensory association area and polysensory processing areas (Romanski et al., 

1993, Romanski and LeDoux, 1993, McDonald and Mascagni, 1997, McDonald, 1998). 

Another brain area that projects to the LA is thalamus (LeDoux et al., 1984). In turn, the 

LA sends inputs to other amygdalar nuclei including the central, basal and basomedial 

nuclei, as well as the hippocampus and parahippocampal cortex (Ottersen, 1982, 

Pikkarainen and Pitkanen, 2001). Functionally, the LA is the amygdala region where 

conditioned stimuli and unconditioned stimuli are paired during fear conditioning 

(Romanski et al., 1993, LeDoux, 2000, Sigurdsson et al., 2007). Therefore it is critical for 

fear learning.  

Similar to the LA, the basolateral nucleus of the amygdala (BLA) receives 

projections from sensory association cortical regions and also projects back to some 
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cortical areas (McDonald, 1998). In addition, BLA has reciprocal connections with 

insular, cingulated, and prefrontal, and frontal cortex (Beckstead, 1978, Krettek and Price, 

1978, Ottersen, 1982, Saper, 1984, McDonald et al., 1996). Other regions giving rise to 

afferents to the BLA are the thalamus and hypothalamus. In turn, the BLA sends 

projections to the cholinergic basal forebrain and striatum. Moreover, studies suggest that 

there are reciprocal connections between the BLA, hippocampus and nearby cerebral 

cortex, which provides an anatomical basis for the role of the BLA in emotional memory 

consolidation. Hippocampal projections to the BLA and basomedial amygdala appear to 

be involved in contextual conditioning (Maren and Fanselow, 1995), whereas cue 

conditioning relies more on the lateral nucleus to central nucleus pathway (LeDoux, 

2000). The BLA seems to be the major source of intra-amygdaloid innervations, 

projecting to central, medial and lateral nuclei (Nitecka et al., 1981, Cassell et al., 1999), 

thus it is important for information integration inside the amygdala.  

The basomedial nucleus is the major target of the outputs from the lateral nucleus 

(Pitkanen and Amaral, 1991, Savander et al., 1997). In addition, it also receives 

projections from hypothalamus and brainstem (McDonald, 1998). Through these 

connections, the basomedial nucleus plays a role in many autonomic and endocrine 

responses related to emotional behaviors (McDonald, 1998). In turn, it sends projections 

to the cortical sensory association areas, frontal cortex, and cingulated cortex and 

striatum.  As mentioned earlier, the basomedial nucleus is involved in contextual 

conditioning via its connection with the hippocampus (Maren and Fanselow, 1995).  
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2.1.2 CENTRAL MEIDIAL NUCLEAR GROUP  

Several nuclei make up the centromedial nuclear group, including the central 

nucleus, medial nucleus and intra-amygdaloid proportion of the bed nucleus stria 

terminalis (McDonald, 1998). The central and medial nuclei extend forward to become 

continuous with the bed nucleus of the stria terminalis. These three structures exhibit 

anatomically and functionally similarities and are often collectively referred to as 

“extended amygdala” (McDonald, 2003). Nuclei in this group heavily connect with 

olfactory, hypothalamus and brain stem, but connect with the cortex and thalamus to a 

less extent. 

The central nucleus (CeA) is a complex structure and contains four subdivisions 

(McDonald, 1982a). The CeA receives extrinsic projections from the insular cortex, 

entorhinal cortex, hypothalamus, parabrachial nuclei, nucleus of the solitary tract and 

locus ceruleus (Fallon et al., 1978, Ricardo and Koh, 1978, Mason and Fibiger, 1979, 

Saper and Loewy, 1980, Ottersen, 1981, Russchen, 1982, Fulwiler and Saper, 1984, 

Augustine, 1996, McDonald and Mascagni, 1997). The CeA is also innervated by intra-

amygdala afferents from other amygdala nuclei including the BLC, intercalated cell 

nuclei, cortical and medial nuclei (Cassell et al., 1999, Zimmerman et al., 2007). In turn, 

the CeA indirectly projects to the hypothalamus and brainstem via the bed nucleus of the 

stria terminalis as a relay site. The CeA also sends substantial inputs to the hypothalamus 

directly (LeDoux et al., 1988). In addition, the CeA heavily projects to the brainstem 

(Veening et al., 1984). Functionally, CeA serves as an output center important for 

mediating fear responses (Samson and Pare, 2005). CeA may also be involved in the 
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acquisition and consolidation of fear memory as well (Wilensky et al., 2006, Zimmerman 

et al., 2007).  

The medial nucleus receives inputs from multiple extrinsic sources including the 

piriform cortex, agranular insular cortex, entorhinal cortex, ventral subiculum, and locus 

coeruleus (McDonald, 1998, McDonald et al., 1999, Ma and Morilak, 2005).  

Additionally, it is also targeted by the BLC (Walker et al., 2005). In turn, the medial 

nucleus sends projections to the thalamus, hypothalamus, bed nucleus of  the stria 

terminalis and brainstem (Canteras et al., 1995). Functionally, the medial nucleus is 

crucial for freezing behavior induced by predator odor stimuli (Muller and Fendt, 2006). 

  The intra-amygdaloid proportion of the bed nucleus stria terminalis (BNST) is 

closely related to the stria terminalis (McDonald, 1998). Previous studies have shown that 

the BNST is implicated in anxiety behaviors and responses to contextual stimuli (Pego et 

al., 2008) (Meloni et al., 2006). Moreover, the BNST is directly involved in the 

regulation of the hypothalamus-pituitary-adrenal (HPA) via its projections to the 

hypothalamus (Pego et al., 2008). In addition, evidence shows that the BNST may be 

activated by less explicit information and thus mediate anxiety, whereas the CeA is 

activated by highly processed explicit cue information and therefore involved in 

stimulus-specific fear modulation (Davis and Shi, 1999). 

2.1.3 CORTICAL NUCLEAR GROUP 

The cortical nuclear group includes the cortical nucleus, the nucleus of the lateral 

olfactory tract and the periamygdaloid cortex (McDonald, 1998).  Nuclei in this group lie 

superficially in the amygdala and they extensively connect with the olfactory bulb, 

hypothalamus and brain stem, but connect with the cortex and thalamus to a less extent 
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(McDonald, 1998). This amygdala nuclear group is heavily involved in olfactory 

information processing.  

The cortical nucleus has reciprocal connections with the olfactory bulb and it also 

receives direct projections from the accessory olfactory bulb and piriform cortex 

(McDonald, 1998) (Turner et al 1978, Price 1990, De Olmos et al 1978, Luskin and Price 

1983, Post and Mai 1980, Haberly and Price 1978b, Scalia and Winans 1975). In turn, it 

sends projections to several cortical areas (Kemppainen et al., 2002, Ubeda-Banon et al., 

2007) (Beckstead 1978, Mufson et al 1981, Saper 1982, McDonald and Jackson 1987) 

including the agranular insular cortex, entorhinal cortex and infralimbic prefrontal cortex, 

as well as to several subcortical areas such as the hypothalamus and nucleus accumbens, 

hippocampus and other amygdala nuclei (Wang and Swann, 2006) (Price et al 1991, 

Krettek and Price 1977a,c, Wiegand 1984, Zaborszky 1982, Old and Silv 1985, Ottersen 

1980, Berk and Finkelstein 1982, Conrad and Pfaff 1976a and b, Krieger et al 1979, 

Swanson 1976, Saunders 1988). Functionally, previous study suggests that the cortical 

nucleus is important for odor learning and olfactory fear conditioning (Sevelinges et al., 

2004).   

The nucleus of the lateral olfactory tract (NLOT) consists of three layers 

(McDonald, 1983). The NLOT has reciprocal connections with the olfactory bulb and 

piriform cortex (Schwob and Price, 1984, McDonald, 1998). The NLOT also send 

projections to the anterior olfactory nucleus, the olfactory tubercle, BLC, nuclear 

accumbens, caudate putamen and agranular insular cortex (Santiago and Shammah-

Lagnado, 2004). Functionally, this amygdalar nucleus may influence nonpheromonal 

olfactory guided behaviors such as feeding (Santiago and Shammah-Lagnado, 2004).   
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The periamygdaloid cortex extensively interconnected with the olfactory bulb and 

piriform cortex (McDonald, 1998). This structure also projects to the hippocampus and 

parahippocampal regions, as well as other amygdalar nuclei including the BLC, cortical,  

and medial nuclei (Majak and Pitkanen, 2003). Functionally, it is an amygdaloid region 

processing olfactory information. Moreover, its connections with hippocampus may 

allow emotional significant olfactory stimuli to enter the medial temporal lobe memory 

system (Majak and Pitkanen, 2003). 

2.1.4 OTHER NUCLEI 

The remaining amygdala contains three additional nuclei. They are the 

amygdalohippocampal area, the anterior amygdaloid area, and the intercalated cell nuclei 

(ITC).  

The amygdalohippocampal area receives projections from the hippocampus 

(Kishi et al., 2006). It provides the most substantial amygdala inputs to the endopiriform 

nucleus and sends a light projection to the claustrum (Majak et al., 2002).  

The anterior amygdaloid area lies at the rostral pole of the amygdala and is 

diffusely organized (McDonald, 1998). This area is possibly involved in modulation of 

attention (Gastard et al., 2002).  

The ITC is made up of a group of cells which are predominantly inhibitory 

(McDonald and Augustine, 1993). The ITC receives intrinsic projections from the BLC 

and extrinsic projections from the infralimbic PFC and hippocampus (McDonald et al., 

1996, Royer et al., 1999, Kishi et al., 2006). In turn, it sends projections to the central and 

medial nuclei, and basal forebrain (Pare and Smith, 1993, Smith and Pare, 1994). 

Functionally, the ITC serves as a critical modulator for the communication among 
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amygdala nuclei, as well as between amygdala and subcortical regions (Royer et al., 

1999). Evidence also indicates that ITC may be important for the extinction of fear-

related memory (Royer et al., 1999).  

2.2 NEURONAL MORPHOLOGY AND PHENOTYPE OF THE BLA  

There are two major cell types in the BLA, pyramidal and nonpyramidal neurons 

(also referred to as class I and II neurons, respectively) (McDonald, 1982b). Pyramidal 

neurons represent the predominant cell type in the BLC and constitute about 85% of the 

total neuronal population in this region. These neurons contain glutamate and/or aspartate, 

the principle excitatory neurotransmitters in the mammalian brain. Golgi stains show that 

pyramidal neurons are large, spiny neurons that vary in size in different subdivisions of 

the BLC (McDonald, 1982b). These neurons often have a large pyramidal shaped cell 

bodies and dendrites with dense spines (McDonald, 1982b).  Pyramidal neurons are 

projection neurons and their axons usually give rise to several collaterals which arborize 

modestly in the vicinity of the cell body (McDonald, 1982b, 1992).  

Golgi stains reveal that nonpyramidal neurons are smaller neurons compared with 

pyramidal neurons and they are morphologically heterogeneous (McDonald, 1982b, 

1985a). Nonpyramidal neurons are interneurons and characterized by spine-sparse 

dendrites and axons with fairly dense local arborizations. Immunohistochemistry study 

reveals that the majority of nonpyramidal neurons contain gamma aminobutyric acid 

(GABA) (McDonald, 1985a), a major inhibitory neurotransmitter in the mammalian 

central nervous system.  They can be distinguished based upon their content of various 

neuropeptides (McDonald, 1985b, McDonald and Pearson, 1989), including somatostatin 

(SOM), vasoactive intestinal peptide (VIP), cholecystokinin (CCK), neuropeptide Y 
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(NPY),  as well as their content of calcium binding proteins (McDonald, 1994a, 1997, 

McDonald and Betette, 2001, McDonald and Mascagni, 2001, Mascagni and McDonald, 

2003), including parvalbumin (PV), calbindin (CB) and calritinin (CR). Because there are 

significant overlaps among these different types of nonpyramidal neurons in the BLC, 

they can be further grouped into four distinct subpopulations (Mascagni and McDonald, 

2003) 1) PV+ neurons (most of them contain CB);  2) SOM+ neurons (many of them are 

CB+ and NPY+ ); 3) large CCK+ neurons (some of them are CB+) and 4) small bipolar 

neurons that exhibit various amount of colocalization of VIP, CR and CCK.   
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CHAPTER 3 

NORADRENERGIC INNERVATION OF PYRAMIDAL CELLS IN THE RAT 

BASOLATERAL AMYGDALA  

3.1 INTRODUCTION 

The basolateral amygdalar nuclear complex (BLC) receives a dense noradrenergic input 

primarily originating from the locus coeruleus (LC) (Asan, 1998), which is heavily 

involved in stress and stress-related pathologies (Sved et al., 2002). Studies have shown 

that stressful stimuli such as foot shock induce norepinephrine (NE) release in the rat 

amygdala (Galvez et al., 1996, Quirarte et al., 1998). Also, human functional magnetic 

resonance imaging (fMRI) studies show that elevated NE neurotransmission enhances 

BLC responses to fear signals (Onur et al., 2009). Moreover, a large amount of evidence 

(Cahill et al., 1995, Ferry and McGaugh, 1999, McGaugh, 2004, Ferry and McGaugh, 

2008, Roozendaal et al., 2009) indicates that the NE system in the BLC is involved in 

memory modulation by stress (Cahill et al., 1995, Ferry and McGaugh, 1999, McIntyre et 

al., 2002, McGaugh, 2004, Ferry and McGaugh, 2008, Roozendaal et al., 2009). 

Therefore, the LC is important for providing information about aversive stimuli to the 

BLC and generating appropriate responses to stressors, which suggests that the LC-NE 

circuit in the BLC could be a potential drug target for anxiety disorders.  

Although there is abundant behavioral and clinical evidence for the role of the NE 

system of the BLC in stress and anxiety, there is still no clear picture about how NE 

affects the activity of BLC neurons. Recent studies reveal that BLC neurons can be 
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inhibited or excited by NE afferents from the LC (Buffalari and Grace, 2007, Chen and 

Sara, 2007), but in many cases it was difficult to determine whether the recorded neurons 

were pyramidal cells or interneurons based on their electrophysiological properties 

(Buffalari and Grace, 2007, Chen and Sara, 2007, Buffalari and Grace, 2009). Therefore, 

there is still considerable confusion regarding the differential modulation of distinct 

neuronal subpopulations in the BLC by the NE.  

Anatomical knowledge of NE circuits in the BLC should help to clarify the 

uncertainties of the physiological studies. A previous study using dopamine-β-

hydroxylase (DBH) as a marker for NE axons suggested that only 11% of DBH+ 

terminals in the BLC form synapses (Asan, 1998). This suggests that the NE innervation 

of the BLC is mainly mediated by non-junctional, diffuse release of NE into the 

extracellular space. However, a later study indicated that approximately 31% of DBH+ 

terminals in the lateral amygdala (LA) form synaptic junctions (Farb et al., 2010). This 

discrepancy may be the result of different criteria for synapse identification or the 

nucleus studied. Because these studies analyzed single thin sections, rather than doing 

serial section analysis of synapses, it seems likely that the synaptic incidence may be 

higher than 31%.  

Previous electron microscopy studies have shown that the major postsynaptic 

targets of DBH+ terminals were dendritic shafts and spines, but the cell types of origin of 

these structures were not identified (Asan, 1998, Farb et al., 2010).  Although it has been 

reported that 4% of DBH + terminals formed synapses with GABA+ neuronal structures, 

presumably interneurons, another study from the same group also indicate that 30% of 

DBH+ terminals contacted interneurons which exhibit choline acetyltransferase 
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immunoreactivity (Li et al., 2001).  These inconsistent results suggest that it is still not 

clear about the extent that NE terminals synapse with pyramidal neurons and interneurons 

in the BLC.  

The purpose of the study  in this chapter was to determine the synaptic incidence 

and postsynaptic targets of NE axon terminals in the anterior subdivision of the 

basolateral nucleus of the amygdala (BLa), the main nucleus responsible for NE-

mediated memory consolidation (McGaugh, 2004). An antibody to the norepinephrine 

transporter (NET) protein was used to label NE axons since a previous study of this 

nucleus found that visualization of DBH immunoreactivity at the ultrastructural level 

required immunohistochemistry procedure that hindered morphological preservation of 

neuronal processes and synapses (Asan, 1998). This is the first EM study of the amygdala 

to use NET as a marker for noradrenergic axons. An antibody to the alpha subunit of 

calcium/calmodulin kinase ǁ (CaMK ǁ) was used to selectively label pyramidal cells 

(McDonald et al., 2002) in these dual-labeling studies. To obtain a more precise 

estimation of the synaptic incidence of the NE innervations of the BLa, a serial section 

analysis of NET+ terminals and their contacts was performed. 

3.2 HYPOTHESIS 

Most NE axon terminals will not form synapses in the BLa and if the NE axon 

terminals form synapses then their major postsynaptic targets in the BLa will be distal 

dendritic shafts and spines.  
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3.3 METHODS 

3.3.1 TISSUE PREPARATION 

Male Sprague-Dawley rats weighing 250-350g were used in these experiments. 

Rats were handled in accordance with the principles of laboratory animal care and 

protocols approved by the University of South Carolina Institutional Animal Care and 

Use Committee. Brain tissue was prepared as described in previous studies of our lab 

(Muller et al., 2011). For light microscopy, rats were anesthetized with chloral hydrate 

(350 mg/kg) and perfused intracardially with phosphate buffered saline (PBS; pH 7.4) 

containing 0.5% sodium nitrite (50ml) followed by 4% paraformaldehyde in phosphate 

buffer (PB; pH 7.4) for 20 mins. Then brains were removed and post-fixed in the 

perfusate for three hours. For electron microscopy, rats were anesthetized and perfused 

intracardially with PBS containing 0.5% sodium nitrite (50ml) followed by 2% 

paraformaldehyde-3.75% acrolein in PB for 1min, followed by 2% paraformaldehyde in 

PB for 3 mins. Brains were removed and post-fixed in 2% paraformaldehyde for 1 hr. 

Brains were sectioned on a vibratome in the coronal plane at 50μm.  

3.3.2 LIGHT MICROSCOPY IMMUNOHISTOCHEMISTRY  

Single-label localization of NET+ fibers was performed in two rats using a rabbit 

antibody to NET (1:2000, antibody 43411, obtained from Dr. Randy D. Blakely, 

Vanderbilt University Medical Center). All antibodies were diluted in PBS containing 

0.4% Triton X-100 and 1% normal goat serum. Sections were incubated in the primary 

antibody overnight at 4℃ and then processed for the avidin-biotin immunoperoxidase 

technique using a biotinylated goat anti-rabbit secondary antibody (1: 500, Jackson 

Immunoresearch Laboratories, West Grove, PA) and a Vectastain standard ABC kit 
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(Vector laboratories, Burlingame, CA) with nickel-intensified 3,3 -́diaminobenzidine 

4HCl (DAB, Sigma Chemical Co., St. Louis, MO, USA) as a chromogen to generate a 

black reaction product (Hancock, 1986). After the reactions, sections were mounted on 

gelatinized slides, dried overnight, dehydrated in ethanol, cleared in xylene, and 

coverslipped in Permount (Fisher Scientific, Pittsburgh, PA, USA). Sections were 

analyzed with a Nikon E600 microscopy system and digital light micrographs were taken 

with a Micropublisher digital camera. 

3.3.3 DUAL IMMUNOFLUORESCENCE IMMUNOHISTOCHEMISTRY  

Dual localization studies were performed in two rats using the rabbit NET 

antibody (1:1000; see above) and a mouse monoclonal antibody to dopamine-beta-

hydroxylase (DBH, 1:600; clone 4F10.2, catalog #MAB308, Chemicon International 

Inc.),  the synthetic enzyme for norepinephrine, to determine the overlapping extent of 

NET immunoreactivity and DBH immunoreactivity in the BLa. Sections were incubated 

in PBS containing 0.4% Triton X-100 and 1% normal goat serum at room temperature for 

two hours, and incubated overnight at room temperature in a cocktail of the rabbit NET 

antibody and the mouse monoclonal DBH antibody. After incubation in the primary 

antibody cocktail, sections were rinsed in PBS and incubated in a cocktail of goat anti-

rabbit Alexa-488 and goat anti-mouse Alexa-543 labeled secondary antibodies (1:400; 

Invitrogen, Grand Island, NY, USA) for 3h at room temperature. All secondary 

antibodies were highly cross-adsorbed by the manufacturer to ensure specificity for 

primary antibodies raised in the particular species. Sections were then rinsed in PBS and 

mounted on glass slides using Vectashield mounting medium (Vector Laboratories). 
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Sections were examined with a Zeiss LSM 510 Meta microscope. Fluoresence of 

Alexa 488 (green) and Alexa 543 (red) dyes was analyzed using filter configurations for 

sequential excitation via 488nm and 543nm channels. Digital images were adjusted for 

brightness and contrast using Photoshop 6.0 software. Control sections were processed 

with one of the two primary antibodies omitted and only the color of the corresponding 

secondary fluorescent antibody was observed on the appropriate channel in these 

sections. These results indicated that the secondary antibodies were specific for rabbit or 

mouse IgG and that there was no “crosstalk” between the red and green channels 

(Wouterlood et al., 1998). 

3.3.4 ELECTRON MICROSCOPY DOUBLE LABELING              

IMMUNOHISTOCHEMISTRY 

For electron microscopy studies, a sequential dual-labeling immunoperoxidase 

method was used in three rats to observe the NE innervation of pyramidal cells in the 

anterior subdivision of the basolateral nucleus of the amygdala (BLa) (bregma level -2.1 

through -3.0) (Paxinos and Watson, 1986). To enhance penetration of antibodies, sections 

were either subjected to a freeze-thaw procedure or were incubated with low levels of 

Triton-X-100 (0.02-0.04%) in the antibody solutions. For freeze-thaw, sections were 

crypoprotected in 30% sucrose in PB for 3 hours, followed by three cycles of freezing-

thawing over liquid nitrogen to facilitate antibody penetration. Sections were then rinsed 

in PB and incubated in a blocking solution (PBS containing 3% normal goat serum and 

1% BSA) for 30 mins at room temperature. All antibodies were diluted in the blocking 

solution. Sections were incubated in the rabbit antibody to NET (1:2000) overnight at 4℃ 

and then processed using a biotinylated goat anti-rabbit second antibody for one hour 
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(Jackson Immunoresearch Laboratories, West Grove, PA) and a Vectastain standard ABC 

kit (Vector laboratories, Burlingame, CA) with DAB as the chromogen. After rinsing, 

sections were incubated in an avidin/biotin blocking solution (Vector Laboratories, 

Burlingame, CA). Sections were then incubated overnight at 4℃ in mouse anti-CaMK 

antibody (1:500; Sigma) to label pyramidal cells. For CaMK immunoreactivity, sections 

were processed using a biotinylated goat anti-mouse secondary antibody (1:200, Jackson 

Immunoresearch Laboratories) and an Elite ABC kit (Vector Laboratories). CaMK 

immunoreactivity was then visualized by using a Vector-VIP (Very Intense Purple) 

peroxidase substrate kit (V-VIP, Vector laboratories). This step produces a reaction 

product that appears purple in the light microscope and granular in the electron 

microscope, which was easily distinguishable from the diffuse DAB immunoperoxidase 

reaction product.  

3.3.5 PROCEDURE FOR ELECTRON MICROSCOPY 

After the immunocytochemical reactions, sections were post-fixed in 2% osmium 

tetroxide in 0.16 M sodium cacodylate buffer (pH=7.4) for 1 hour, dehydrated in ethanol 

and acetone, and then flat embedded in Polybed 812 (Polysciences, Warrington, PA) in 

slide molds between sheets of Aclar (Ted Pella, Redding, CA). Selected areas of the BLa 

were remounted onto resin blanks. Silver thin sections were collected on formvar-coated 

slot grids, stained with uranyl acetate and lead citrate, and examined with a JEOL-200CX 

electron microscope. Micrographs were taken with an AMT XR40 digital camera system 

(Advanced Microscopy Techniques, Danvers, MA) 

3.3.6 ANALYSIS 

Two 50μm vibratome sections from each animal were analyzed. From these sections, 

areas with robust presence of both labels were chosen for quantitative analysis. NET+ terminals 
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were followed and fully or partially reconstructed in 3 to 13 serial thin sections. Serial sections 

were helpful for verifying labels in small and/or lightly immunoreactive structures, and for 

determining synaptic contacts. NET+ varicosities were considered to form synapses if they 

showed the following characteristics: 1) parallel presynaptic and postsynaptic membranes 

exhibiting membrane thickening, 2) clustered vesicles associated with the presynaptic membrane, 

and 3) a synaptic cleft containing dense material. Postsynaptic neuronal profiles receiving 

synapses from NET+ varicosities were identified as somata, large caliber dendritic shafts 

(diameter >1µm), small caliber dendritic shafts (diameter <1µm), and spines according to 

established morphological criteria (Peters A, 1991). Although CaMK is a reliable marker for 

pyramidal cells and their processes in the BLa,  many spines of  the pyramidal cells do not exhibit 

CaMK immunoreactivity (McDonald et al., 2002). However, since the results of previous studies 

suggest that the great majority of spines observed in electron microscopy studies belong to 

pyramidal cells (Muller et al., 2006), all spines, whether CaMK + or not, were considered to be of 

pyramidal cell origin. Some NET+ terminals contacted glial cell processes. These glia cell 

processes were identified by their irregular shape and their tendency to fill the space between 

neuronal structures.   

3.3.7 ANTIBODY SPECIFICITY 

The NET antibody we used was obtained from the cytoplasmic NET epitope 

(amino acids 585-602). Previous study (Schroeter et al., 2000) has shown that this NET 

antibody labeling confined to NE neuronal somata, axons and dendrites, but absent from 

adrenergic and dopaminergic neurons. It recognizes a single 80-kDa band corresponding 

to the mature N-glycosylated NET protein in western blot of brain samples. Pre-

adsorption with the peptide eliminates immunoblots and immunostaining of tissue 

sections. Additionally, its specificity was validated by the toxin treatment which destroys 

most of NE neurons. Meanwhile, CaMK antibody has been reported to be a reliable 
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marker for pyramidal cell perikarya and dendrites (McDonald and Mascagni, 2002). The 

specificity of CaMK antibody has been well documented in previous studies and it 

recognizes both phosphorylated and nonphosphorylated forms of the kinase (McDonald 

et al., 2002). Therefore, we use this NET and CaMK antibodies to find out how 

noradrenergic inputs synapse with pyramidal cells.  

3.4 RESULTS 

3.4.1 LIGHT MICROSCOPY OBSERVATIONS 

NET+ axons were distributed across the basolateral nuclear complex of the 

amygdala (BLC). NET+ axons were denser in the BLa than in the lateral and central 

nuclei (Figure 3.1.A). NET+ axons had small or large varicosities with relatively short 

inter-varicose segments and ran in all directions (Figure 3.1.B). Dual localization 

experiments of NET and DBH revealed that almost all axons were dual-labeled (Figure 

3.2). However, there were few varicosities that were DBH positive but NET negative, 

and some inter-varicose segments were NET positive but DBH negative (Figure 3.2.C).  

3.4.2 ELECTRON MICROSCOPY OBERSERVATIONS 

At the electron microscopy level, NET+ profiles consisted of thin unmyelinated 

axons and varicosities containing synaptic vesicles (Figures 3.3-3.5, 3.7-3.9). The 

peroxidase reaction product was distributed throughout these NET + profiles, with 

accumulations near the plasma membrane and the outer membrane of vesicles and 

mitochondria. NET+ terminals were round or ovoid, with closely packed small, round 

clear synaptic vesicles, sometimes associated with large clear vesicles (Figures 3.3-3.5, 

3.7-3.9). Occasional medium size, dense-core vesicles were also seen (Figures 3.3.B and 

3.7). These terminals ranged in size from 0.16 to 1.3 µm in diameter and some of them 

contained one or more mitochondria. The morphology of NET+ profiles was consistent 
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with descriptions of DBH+ profiles reported in previous studies of the basolateral 

amygdala. (Asan, 1998, Li et al., 2001, Li et al., 2002, Farb et al., 2010). 

NET+ terminals formed synapses with both CaMK+ and unlabeled profiles in our 

dual-labeling preparations, and their postsynaptic targets include somata, large and small 

caliber dendrites, and spines (Figures 3.3-3.6) (Table 3.1). No direct contact with 

endothelial cells was observed, but in one case, a small NET terminal apposed a glial 

process which surrounded a blood vessel. The synaptic incidence of NET+ terminals was 

determined by examining each terminal in 3 to 13 serial thin sections, averaging 6.5 ± 2.3 

(Mean ± SD). The average number of serial sections used to reconstruct terminals 

forming synapses (6.6 ± 2.4) was virtually identical to the non-synaptic terminals (6.5 ± 

2.3). Terminals which lacked distinct contours or occurred in too few available sections 

to identify synapse formation were excluded from the analysis. About half (45/98 or 

46%) of NET+ terminals formed synapses. The size of terminals forming synapses 

ranged from 0.2 - 0.96 µm in diameter, averaging 0.45 ± 0.19 µm (Mean ± SD). 

Terminals which did not form synapses ranged in size from 0.16 to 1.28 µm in diameter, 

averaging 0.61 ± 0.25 µm. Both symmetrical and asymmetrical synapses were observed, 

but symmetrical synapses were more common (38/45 or 84%) (Table 3.1).  

Most (38/45 or 84%) of the synapses were formed with pyramidal cells (CaMK+ 

structures and spines) (Figures 3.3-3.5) (Table 3.1). The main postsynaptic target were 

small dendritic shafts (15/38 or 39%) (Figures 3.3.A, 3.3.B and 3.5.C) and spines (14/38 

or 37%) (Figures 3.4 and 3.5.D). However, some also occurred on large dendritic shafts 

(8/38 or 21%) (Figures 3.3.C and 3.3.D), and one symmetrical synapse was found on a 

CaMK+ soma (Figures 3.5.A and 3.5.B). Synapses formed with unlabeled neuronal 
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processes, presumably interneurons, mainly targeted small dendritic shafts (Figure 3.7). 

In two instances, NET+ axons appeared to encapsulate an unlabeled axon terminal and its 

postsynaptic spine (Figures 3.8 and 3.9). In additional to the neuronal profiles, some 

NET+ terminals (7/98 or 7.1%) formed apposition with astrocytic processes that 

sometimes had characteristics of synapses (Figure 3.10). 
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Figure 3.1 NET immunoreactivity in the BLa.  A, Lower power 

immunofluorescence micrograph illustrating NET+ fibers (green) in the BLa, La 

(lateral nucleus) and CL (later subdivision of central nucleus) at bregma level -2.1. 

B, High power micrograph illustrating NET+ fiber morphology in the BLa using 

nickel-enhanced DAB as a chromogen in an immunoperoxidase preparation. 

Arrows point to the NET+ varicosities.  Scale bar=100μm in A, 10μm in B 
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Figure 3.2 NET and DBH immunoreactivity in the BLa. A1-A3: Lower 

power immunofluorescence micrographs. ( A1) Green channel 

micrograph showing NET antibody labeled axons in the BLa. (A2) Red 

channel micrograph showing DBH antibody labeled axons in the same 

field as A1. (A3) Merged image showing dual localization of NET and 

DBH in yellow. Virtually all axons are double-labeled. B1-B3: Higher 

magnification Z series reconstruction (1μm between optical sections for 

12 sections) NET and DBH immunoreactivity in the BLa. (B1) NET 

(green) in the BLa. (B2) DBH (red) in the same field as B1. (B3) 

Merged image showing co-localization of NET and DBH in yellow. 

Virtually all axons are double-labeled (yellow). Arrows point to an 

axon segment which is enlarged in C. C: High power Z series 

reconstruction of an axon segment shown in B3. Double-labeled 

structure showing yellow. Scale bar=50μm in A1-3, 10μm in B1-3, 

1μm in C 
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Figure 3.3 NET+ terminals innervate CaMK+ dendrites. A and B: NET terminals 

(Nt) form symmetrical synapses (arrows) with small caliber (<1 μm) CaMK+ 

pyramidal cell dendrites (Cd). The NET+ terminal in B contains two small dense 

core vesicles (small arrows). C and D: NET terminals (Nt) form symmetrical 

synapses (arrow) with large caliber (≥1 μm) CaMK+ pyramidal cell dendrites (Cd). 

Arrowheads indicate the particulate V-VIP label for CaMK. Scale bar=0.5μm. 
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Figure 3.4 NET+ terminals innervate CaMK+ spines. A and B: Two adjacent thin 

sections through three NET+ terminals (Nt1-3) which form symmetrical (Nt2 in A 

and Nt3 in B) and asymmetrical (Nt 1 in A) synapses (arrow) with spines (sp). 

Arrowheads indicate the particulate V-VIP labels for CaMK. A and B are the 2
nd

 and 

3
rd

 sections, respectively, from a 6-section series. Scale bar=0.5μm. 
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Figure 3.5 An NET+ axon forms multiple contacts with a CaMK+ pyramidal cell 

soma and adjacent CaMK+ dendritic processes. A: Low power micrograph showing 

two terminals (Nt1 and Nt2) of a single NET+ axon form symmetrical synapses 

(arrows) with a CaMK + dendrite (left) and a CaMK+ soma (right, Cs) B-D: High 

power micrograph showing three sections in a serial passing through the axon shown 

in A (C corresponds to the section shown in A). (B) Nt2 forms a symmetrical synapse 

(arrows) with a CaMK+ soma (Cs, also seen in C). (C) Nt1 forms a synapse (arrows) 

with a CaMK+ dendrite. This synapse appears symmetrical in this section, but 

appears to be associated with postsynaptic density in B. (D) Nt2 surrounds and forms 

a symmetrical synapse (arrow) with a spine (Sp, right) which is extending from a 

CaMK+ dendrite (Cd). Nt1 form a symmetrical synapse with another spine (Sp, left). 

Arrowheads indicate the particulate V-VIP labels for CaMK. B-D are the 12
th

, 10
th

 

and 8
th

 sections, respectively, from a 12-section series. Scale bar=0.5μm. 
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Note:  +: CaMK labeled; -: unlabeled; S, soma; LD, large dendrite (diameter ≥1µm); 

SD, small dendrite (diameter <1µm); Sp, spine. n=98. 
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+S +LD +SD Sp -S -LD -SD Total 

Number 

Symmetrical 

NET synapses 

1 

3% 

7 

18% 

13 

34% 

12 

32% 

1 

3% 

0 

0 

4 

10% 

38 

100% 

Asymmetrical 

NET synapses 

0 

0 

1 

14% 

2 

29% 

2 

29% 

0 

0 

1 

14% 

1 

14% 

7 

100% 

Total Number 

of NET 

synapses 

1 

 

2% 

8 

 

18% 

15 

 

34% 

14 

 

31% 

1 

 

2% 

1 

 

2% 

5 

 

   11% 

45 

100% 

 

Table 3.1 Postsynaptic Targets of NET + terminals in the BLa in preparations dual 

labeled for NET and CaMK. 
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Figure 3.6  Histogram showing the number of synapses of NET+ terminals 

with CaMK positive (dark gray) or negative (light gray) and spines (white)  
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Figure 3.7 A NET+ terminal innervates an unlabeled dendrite. A 

NET+ terminal (Nt) forms an asymmetrical synapse (arrows) with 

an unlabeled dendrite (Ud). Arrowheads indicate the particulate 

V-VIP label for CaMK. Small arrows show the dense core 

vesicles. Scale bar=0.5μm. 
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Figure 3.8 A NET+ terminal surrounds a synaptic structure. A-D:  Four 

sections in sequential order from serial thin sections through an NET+ 

terminal (Nt) that envelopes a synapse formed by an unlabeled terminal 

(Ut) and its postsynaptic spine (Sp).  The NET terminal (Nt) appears to 

form a synapse with the spine (Sp) in B. A-D are the 1
st
, 4

th
,8

th
, and 12

th
 

sections, respectively, from a 13-section series. Scale bar=0.5μm. 
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Figure 3.9 A NET terminal surrounds a synaptic structure. A-D:  Four sections in 

sequential order from a series of sections through an NET+ axon terminal (Nt) that 

envelops a synapse formed by an unlabeled axon terminal (Ut) and its postsynaptic 

spine (Sp). The NET terminal appears to form a synapse with the spine in B (arrow). 

A-D are the 2
nd

, 6
th

, 8
th

 and 12
th

 sections, respectively, from a 12 section series. Scale 

bar=0.5μm. 



www.manaraa.com

 

37 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 NET+ terminals contact with astrocytic processes. A and B: NET+ 

terminals (Nt) form synapse like contacts with astrocytic processes (G); Scale 

bar=0.5μm. 
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3.5 DISCUSSION 

This is the first study to use NET as a marker for NE fibers in the amygdala. The 

distribution of NET immunoreactivity is consistent with observations of nisoxetine 

autoradiographic labeling of NET in the amygdala (Hipolide et al., 2005, Smith and 

Porrino, 2008).  At both light and electron microscopy levels, the morphology of NET+ 

fibers in our investigation seems to be identical to that described in previous studies of 

cortex using the same antibody as a NE axon marker (Miner et al., 2003). Our dual 

labeling light microscopy results revealed that DBH was more concentrated in terminals, 

and NET tends to localize in the axons and terminals, but their staining mostly 

overlapped in the BLa. This is the first NE study in the BLa using CaMK 

immunohistochemistry to identify pyramidal cells. In addition, it is also the first NE 

study conducting serial section analysis, which should provide a relatively precise 

estimate of synaptic incidence. According to our observations, only half of the NET+ 

terminals form synapses in the BLa and the most frequent targets of these terminals are 

smaller dendritic shafts and spines of pyramidal cells. 

3.5.1 ANATOMICAL CONSIDERATIONS 

A previous study using DBH as a marker for NE axons suggested that 11% of 

DBH+ terminals in the basolateral complex of the amygdala formed synapses (Asan, 

1998). However, a later study suggested that approximately 31% of DBH terminals in the 

LA formed synaptic junctions (Farb et al., 2010). The discrepancy may represent 

differences in synapse identification criteria, experimental methods, or the nucleus 

studied. A stronger fixation (acrolein) may have contributed to the higher synapse 

incidence in Farb’s results.  We used acrolein in our study, but the higher (46%) synaptic 

incidence is most likely due to the analysis of serial sections. However, only some of the 
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NET+ terminals were completely followed during our observation since the average 

analyzed distance (average section numbers for analysis × section thickness =0.42 μm) is 

less than the average size of NET+ axon terminal (0.52 μm). It is possible that we missed 

some of the synaptic formations. Moreover, if the plane of section is not favor for the 

synapses, we might also miss them. It seems that the actual synaptic incidence of NE in 

the BLa may be higher than 46%.  

 However, this number (46% or even higher) is still much lower than the synaptic 

incidence of other neurotransmitters in previous BLa studies of our lab, such as serotonin 

(76%), dopamine (77%) and acetylcholine (76%), which used the same technique and 

analysis strategy (Muller et al., 2007, 2009, Muller et al., 2013). This indicates that the 

NE system is unique in the BLa. This suggests that NE axons in the BLa function partly 

by non-junctional, diffuse release of NE in the extracellular space. 

There are similar disagreements about noradrenergic synaptic incidence in the rat 

cortex. An early study using DBH immunohistochemistry revealed that more than half of 

the DBH-positive varicosities form synapses in the central nervous system (Olschowka et 

al., 1981) and the vast majority of noradrenergic projections form synapses in the visual 

and frontoparietal cortex (Papadopoulos et al., 1989). Later studies suggested that only 

15-20% of NE terminals form synapses in neocortex and hippocampus (Seguela et al., 

1990, Umbriaco et al., 1995). However, a recent study reported a higher percentage 

(24%) of synapse formation in the prefrontal cortex using NET as a marker for NE axons. 

(Miner et al., 2003). These differences in synaptic incidence appear to be due to 

differences in criteria for synapse identification, fixation, cortical area studied, and the 

extent of serial section analysis.  
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Consistent with previous investigations in the amygdala, NET+ terminals mainly 

synapsed with dendrites and spines; very few were seen with somata. Our double labeling 

preparations revealed that CaMK+ smaller dendrites and spines were the most frequent 

postsynaptic targets of noradrenergic system in BLa. Thus, the synaptic modulation of the 

BLA by NE afferents from LC would appear to be mediated primarily by inputs to the 

distal dendrites of pyramidal cells. 

It has been reported that 4.4% of DBH+ terminals form synapses with dendrites 

of GABA+ interneurons in BLa (Li et al., 2002). We observed a higher rate of synapse 

formation (16%) with unlabeled neuronal structures, (i.e., presumptive interneurons), but 

it is possible that some of these unlabeled structures were false negatives. Li and 

colleagues only observed asymmetrical synapses with interneurons, but we found that 

NET+ terminals also formed symmetrical synapses with unlabeled dendrites.  

Although both symmetrical and asymmetrical synapses were found in our 

preparations, NET+ terminals predominantly formed symmetrical synapses with both 

labeled and unlabeled structures, which is consistent with previous reports (Asan, 1998, 

Farb et al., 2010). Since symmetrical synapses are typically inhibitory and the 

asymmetrical ones are excitatory, the general effect of NE inputs on the BLa neurons 

possibly is inhibitory. But, this assumption is based on the glutamate and GABA systems; 

it may not be true if applying to other neurotransmitter systems, like NE. For example, 

almost all cholinergic synapses in the BLa are symmetrical, but acetylcholine mainly has 

excitatory effects on BLa neurons (Muller et al., 2011). The presence of symmetrical or 

asymmetrical synapses may represent different types of receptors. Previous studies have 

found that there are several different subtypes of alpha and beta adrenergic receptors 
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expressed in BLa neurons. For example, Farb reported that β-adrenergic receptors are 

present in pyramidal and interneuron cell bodies, dendritic shafts and spines in the LA 

(Farb et al., 2010). An earlier study revealed that NE directly excited interneurons via the 

α1 adrenergic receptor in BLa (Kaneko et al., 2008).  

Interestingly, we observed that two NET+ terminals send out sheet-like 

extensions that envelope an unlabeled terminal and its postsynaptic spine. Both of these 

NET+ terminals appeared to form symmetrical synapse with the spine. This unique 

structure has also been seen in the frontal cortex ((Seguela et al., 1990). However, it is 

not clear about the functional significance of this kind of configuration. This NET+ 

enclosure may isolate the unlabeled synapses from surrounding structures and thus make 

it only under NE control.  

We observed some synapse-like appositions of NET+ terminals with astrocytic 

processes suggesting neuronal-glial interactions. This finding is consistent with previous 

observations of the astrocytic localization of β-adrenergic receptors in rat brain (Aoki, 

1992, Farb et al., 2010).  

3.5.2 FUNCTIONAL IMPLICATIONS 

Considering that only about half of NET+ terminals form synapses in the BLa, 

non-junctional, diffuse release of NE into the extracellular space could be involved in NE 

modulation of BLa functions. This intercellular communication mode, called volume 

transmission (VT), was first introduced by Agnati and Fuxe (Agnati et al., 1986). Unlike 

traditional junctional or wired transmission (WT), VT lacks any wire-like channel 

connecting signal sources and targets. VT utilizes the same set of neurotransmitters and 

receptors as WT, but VT signals can be released from axons without synaptic membrane 

specialization, and they could diffuse in the extracellular space for a long distance 
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(Agnati et al., 2010). VT is principally responsible for the tonic control of brain function 

through extrasynaptic receptors, and most CNS drugs primarily affect VT instead of WT 

(Vizi et al., 2010).    

Moreover, unlabeled terminals were found in the vicinity of some NET+ 

terminals including the sheet-like structures mentioned earlier, but they don’t have 

synaptic contact with NET+ terminals. This finding suggests that presynaptic effects of 

NE on BLa neuronal circuit may come from NE released from non-synaptic junctions by 

VT or spillover from synaptic terminals (Huang et al., 1996, Ferry et al., 1997, Braga et 

al., 2004).  

LC neurons fire in two distinct activity modes: tonic and phasic (Berridge and 

Waterhouse, 2003). The synaptic formations we observed in the present study seem to 

contribute to the NE release in the BLa during the phasic mode activity of the LC in 

response to salient sensory stimuli like footshock as well as direct electrical stimulation 

of the LC in vivo since the response of the BLa neuron has a relative short latency and a 

temporal relationship with the excitation of  LC neurons (Chen and Sara, 2007). 

Nonsynaptic transmission may contribute to tonic NE release in the BLa which is 

essential for arousal and attention (Berridge and Waterhouse, 2003).  

BLa neurons exhibit heterogeneous, but prominently, inhibiting responses to 

phasic LC activation (Chen and Sara, 2007). Studies using iontophoresis of NE into the 

BLa found similar results (Buffalari and Grace, 2007). Responses were observed in 

putative pyramidal neurons and interneurons identified based on firing rate and 

antidromic activation by cortical stimulation (Buffalari and Grace, 2007, Chen and Sara, 
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2007). Therefore our finding that NET+ terminals primarily synapse with CaMK+ 

pyramidal projection neurons is consistent with these electrophysiological results.  

Previous studies revealed that increasing the activity of NE system has multiple 

actions on different types of neurons in the BLC (Chen and Sara, 2007, Buffalari and 

Grace, 2009), which is mediated by different types of adrenoceptors. It has been shown 

that NE inputs to BLC exert potent α2 adrenergic receptor mediated inhibition of 

spontaneous activity and attenuation of evoked activity for most pyramidal cells, but NE 

also has excitatory effects mediated by β adrenergic receptors for a small portion of 

pyramidal cells in BLC (Buffalari and Grace, 2007). Together with our findings, these 

observations suggest that the effect of NE inputs on neuronal activity was determined by 

localization of the adrenergic receptors expressed on BLa neurons. Further investigations 

on the distribution and expression of different types of adrenergic receptors in BLa 

neurons and glia will help to unravel how NE circuits modulate amygdalar activity. 

Studies in humans and animals have shown that noradrenergic activation in the 

amygdala is essential for the formation and recall of memories involving emotional 

events (Berridge and Waterhouse, 2003, McGaugh, 2004). The N-methyl-D-aspartate 

(NMDA) receptor is known to play a key role in synaptic plasticity underlying learning 

and memory (Sigurdsson et al., 2007). Previous studies in rat BLa have shown that both 

pyramidal cells and non-pyramidal cells exhibit NMDA receptor subunit 1 (NMDAR1) 

immunoreactivity, and NMDAR1 is located in the dendrites and spines (McDonald, 

1994b, Farb et al., 1995, Radley et al., 2007) . According to our observations, distal 

dendritic shaft and spines are the major postsynaptic targets of NE inputs in the BLa, 
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which suggests that NE inputs could affect synaptic plasticity by modulating NMDA 

receptor activities. 
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CHAPTER 4   

MU OPIOID RECEPTOR LOCALIZATION IN THE RAT BASOLATERAL AMYGDALA 

4.1 INTRODUCTION 

The endogenous opioid system plays an important role in the process of stress adaptation 

by attenuating or terminating stress responses (Drolet et al., 2001). Endogenous opioid 

peptides including enkephalin, dynorphin and endorphin, produce their effects via three 

major types of G-protein coupled receptors: mu, delta, and kappa (Drolet et al., 2001). 

Preproenkephalin knock-out mice which have an endogenous deficit in enkephalin, elicit 

stronger anxiety and depressive PTSD-like symptoms than wild type animals (Kung et 

al., 2010). Overexpression of preproenkephalin in the amygdala potentiates the anxiolytic 

effects of benzodiazepine (Kang et al., 2000). Considerable evidence indicates that mu 

opioid receptors (MORs) in the BLA are also involved in stress related hypoalgesia 

(Helmstetter et al., 1995, Helmstetter et al., 1998, Shin and Helmstetter, 2005). Although 

BLA neurons do not directly project to nociceptive areas such as the periaqueductal gray 

(PAG), the BLA has extensive connections with the central amygdala which has dense 

reciprocal connections with the PAG (Hopkins and Holstege, 1978, Rizvi et al., 1991, 

Harris, 1996). It is believed that MORs activation reduces the GABA inhibition to 

pyramidal neurons in the BLA by modulating the presynaptic potassium channels and 

therefore affects the neurotransmission in this BLA to PAG pathway (Helmstetter et al., 

1998, Finnegan et al., 2006, Sah, 2006).  Additionally, the opioid system in the BLa has 

been reported to be involved in regulating memory storage: the opiate antagonist 
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naloxone has been found to enhance retention in inhibitory avoidance and this effect can 

be reversed by the mu  opioid receptor (MOR) agonist DAMGO (Introini-Collison et al., 

1995). 

Naloxone mainly binds to MOR, the most widely distributed opioid receptor in rat 

brain (Mansour et al., 1987, Paden et al., 1987). Autoradiographic receptor binding 

studies found that the amygdala contains dense MORs, and the BLA has a greater 

abundance of MORs than the central amygdala (Mansour et al., 1987). Despite the fact 

that MOR activation in the BLA is highly involved in regulation of stress response and 

memory consolidation, little is known about how MOR affects neural activity in the 

BLA. Knowledge about the ultrastructural localization of MORs in the BLA may help us 

understand the underlying mechanism of opioid action. Electron microscopy combined 

with immunocytochemistry was used in the present investigation to study the 

ultrastructural localization of MORs in the BLa.  

Early electrophysiological studies have shown that MOR activation can 

hyperpolarize a subpopulation of interneurons and also disinhibit pyramidal cell by 

inhibiting GABA release in the BLA, indicating that MORs may present in the cell 

bodies, dendrites and axon terminals of some interneurons (Sugita and North, 1993). One 

later study found that MOR activation also inhibits pyramidal cells via activating a 

potassium current in their dendrites in the BLA, suggesting that MORs may be expressed 

in the dendrites of pyramidal cells as well (Faber and Sah, 2004). 

4.2 HYPOTHESIS 

MORs are located in somata, dendrites and axon terminals of neurons in the BLa. 
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4.3 METHODS 

4.3.1 TISSUE PREPARATION 

A total of five male Sprague-Dawley rats weighing 250-350g were used in this 

study. Rats were handled in accordance with the principles of laboratory animal care and 

protocols approved by the University of South Carolina Institutional Animal Care and 

Use Committee. Rats were anesthetized with a ketamine mixture ( ketamine: 85mg/kg; 

xylazine: 8mg/kg; acepromazine: 4mg/kg) and perfused intracardially with PBS 

containing 1% sodium nitrite, followed by 2% paraformaldehyde-3.75% acrolein in 

phosphate buffer(PB) for 1 minute, followed by 2% paraformaldehyde in PB for 20 

minutes. Brains were removed and post-fixed in 2% paraformaldehyde for one hour. 

Brains were sectioned on a vibratome in the coronal plane at 60 μm. 

4.3.2 LIGHT MICROSCOPY IMMUNOHISTOCHEMISTRY  

Light microscopy MOR localization was performed in rats using a rabbit antibody 

to MOR antibody (1:1000, ImmunoStar, Hudson, WI). All antibodies were diluted in 

PBS containing 0.4% Triton X-100 and 1% normal goat serum. Sections were incubated 

in the primary antibody overnight at 4℃ and then processed for the avidin-biotin 

immunoperoxidase technique using a biotinylated goat anti-rabbit secondary antibody (1: 

500, Jackson Immunoresearch Laboratories, West Grove, PA) and a Vectastain standard 

ABC kit (Vector laboratories, Burlingame, CA) with nickel-intensified 3,3 -́

diaminobenzidine 4HCl (DAB, Sigma Chemical Co., St. Louis, MO, USA) as a 

chromogen to generate a black reaction product (Hancock, 1986). After the reactions, 

sections were mounted on gelatinized slides, dried overnight, dehydrated in ethanol, 

cleared in xylene, and coverslipped in Permount (Fisher Scientific, Pittsburgh, PA, USA). 



www.manaraa.com

 

48 

Sections were analyzed with a Nikon E600 microscopy system and digital light 

micrographs were taken with a Micropublisher digital camera. 

4.3.3 ELECTRON MICROSCOPY IMMUNOHISTOCHEMISTRY  

Immunoperoxidase methods were used to observe the ultrastructural localization 

of MORs in the BLa. Sections were incubated in the MOR antibody (1:1000, 

ImmunoStar, Hudson, WI) with 0.02% Triton-X overnight in a cold room after 30 

minutes in a blocking solution (PBS containing 3% normal goat serum , 1% BSA and 

0.02% Triton-X). All antibodies were diluted in the blocking serum. Then sections were 

processed using a biotinylated goat anti-rabbit antibody (1:500, Jackson 

ImmunoResearch, West Grove, PA) and a Vectastain standard ABC kit (Vector 

Laboratories, Burlingame, CA). MOR immunoreactivity was then visualized using a 

Vector-VIP (Very Intense Purple) peroxidase substrate kit (Vector Laboratories, 

Burlingame, CA). This step produced a reaction product that appears purple in the light 

microscope and granular in the electron microscope.  

4.3.4 PROCEDURE FOR ELECTRON MICROSCOPY 

Sections were then post-fixed in 2% osmium tetroxide in 0.16 M sodium 

cacodylate buffer for one hour, dehydrated in ethanol and acetone, and flat embedded in 

Polybed 812 (Polysciences, Warrington, PA) in slide molds between sheets of Aclar (Ted 

Pella, Redding, CA). Selected areas of the BLa were remounted onto resin blanks. Silver 

thin sections were collected on formvar-coated slot grids, stained with uranyl acetate and 

lead citrate and examined with a JEOL-200CX electron microscope. Micrographs were 

taken with an AMT XR40 digital camera system (Advanced Microscopy Techniques, 

Danvers, MA). 
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4.3.5 ANALYSIS 

Vibratome sections from three rats (one for each animal) with the best labeling 

quality were selected for thin sectioning and analysis. From these sections, areas with the 

best morphology and immunohistochemistry for MORs were chosen for quantitative 

analysis. About 3600 μm
2
 area from each section was used for counting and a total of 

2378 labeled profiles were counted. Numbers from three rats were pooled together for 

analysis. Medium or large structures (≥0.2μm) were counted as labeled only if they 

contained two or more labeled granules. Small structures (<0.2μm) were counted as long 

as they contained one labeled granule. MOR+ profiles were identified as somata, large 

caliber dendritic shafts (diameter ≥1μm), small caliber dendritic shafts ( diameter <1μm), 

spines, axons, axon terminals, and glia processes according to established morphological 

criteria (Peters A, 1991). MOR labeled terminals were followed and fully or partially 

reconstructed in 3 to 13 serial thin sections. Serial sections were helpful for verifying 

label in small and/or lightly immunoreactive structures, and for determining synaptic 

contacts.  MOR labeled terminals were considered to form synapses if they showed the 

following characteristics: 1) parallel presynaptic and postsynaptic membranes exhibiting 

membrane thickening, 2) clustered vesicles associated with the presynaptic membrane, 

and 3) a synaptic cleft containing dense material. Asymmetrical and symmetrical 

synapses were identified based on the presence or absence of a prominent postsynaptic 

density and the widths of their synaptic clefts. Asymmetrical synapses usually have wider 

synaptic clefts (20nm) than symmetrical ones (12nm) (Peters A, 1991).  Postsynaptic 

neuronal profiles receiving synapses from MOR labeled terminals were identified as 

MOR labeled or unlabeled somata, large caliber dendritic shafts (diameter ≥1μm), small 
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caliber dendritic shafts (diameter <1μm), or spines according to established 

morphological criteria (Peters A, 1991) 

4.3.6 ANTIBODY SPECIFICITY 

The rabbit polyclonal MOR antiserum (ImmunoStar, Cat. 24216) used in this 

study was raised against a synthetic peptide corresponding to amino acids 384-398 of the 

carboxyl terminus of the rat MOR1 coupled to bovine thyroglobulin with glutaraldehyde.  

Specificity of this antibody has been well documented in previous studies (Gracy et al., 

1997, Deng et al., 2007, Likhtik et al., 2008). An earlier study in our lab demonstrated 

that pre-absorption of the MOR antiserum with MOR eliminated all immunostaining, but 

cross-absorption of MOR antiserum with non-matching peptides did not affect 

immunostaining (Wilson et al., 2002).    

4.4 RESULTS 

4.4.1 LIGHT MICROSCOPY OBSERVATIONS 

At the light microscopy level, MOR immunoreactivity (MOR-ir) presents a wide 

uneven distribution through the amygdala, consistent with the dense but differential 

DAMGO binding in the individual amygdala nuclei observed in the autoradiographic 

binding studies (Mansour et al., 1987). Strongest staining was found in the intercalated 

nuclei (Figure 4.1). Much lighter neuropil labeling was observed in the basolateral 

amygdala (Figure 4.1.A). Few interneurons were found labeled in their somata and 

processes in both the BLa and lateral nucleus of the amygdala (Figure 4.1.B). These 

findings are consistent with previous light microscopy immunohistochemistry studies 

(Ding et al., 1996, Wilson et al., 2002).  
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4.4.2 ELECTON MICROSCOPY OBSERVATION  

At the electron microscopy level, MOR positive (MOR+) structures included 

somata, dendritic shafts, spines, axon terminals, thin unmyelinated or myelinated axons, 

and glia processes (Figure 4.2). Only three MOR+ somata were found in our 

preparations. One MOR+ soma had a round smooth nuclear membrane and a modest 

amount of cytoplasm, which are characteristics of pyramidal cells (Figure 4.3.A). In the 

other case, a soma received multiple asymmetrical synapses, typical of interneurons 

(Figure 4.3.B). In these MOR+ somata, the MOR-ir was seen in the cytoplasm and was 

found associated with the Golgi apparatus or endoplasmic reticulum (Figure 4.4).  

The most frequently labeled structures in the neuropil were dendritic structures. 

Counts of MOR+ profiles revealed that large-caliber dendrites, small caliber dendrites 

and spines comprised 11.1% (265/2378), 50.5% (1200/2378) and 10.8% (258/2378) of all 

MOR+ profiles, respectively (Figures 4.2, 4.4-4.6). It is impossible to definitely identify 

the cell type of origin of these MOR+ dendrites, based only on their morphological 

features. Nevertheless, the presence of spines on some MOR+ dendrites suggests that 

they may belong to pyramidal cells (Figures 4.4.B, 4.5.B and 4.5.C) (Muller et al., 2006) 

. We also found several dendrites received multiple asymmetrical synapses (Figure 

4.4.C), which is a characteristic of interneuronal dendrites in the BLa (Muller et al., 

2011). MOR-ir in these labeled dendrites and spines was mainly cytoplasmic (Figures 

4.4-4.6 and 4.8), but MOR+ labeling near the plasma membranes was observed in many 

cases as well (Figures 4.5and 4.8).   

MOR-ir was also seen in small unmyelinated or myelinated axons, but only in a 

few cases. However, MOR labeling was commonly observed in axonal terminals, 
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constituting 20.9% (497/2378) of MOR+ profiles (Figure 4.2). V-VIP particulate reaction 

product in these MOR labeled terminals was often associated with synaptic vesicles, near 

the active zone or occurred randomly in the varicosities (Figures 4.3.A, 4.4.C, 4.5.A, 

4.5.C and 4.8). About 40% (197/497) of MOR+ terminals formed synapses. MOR+ 

terminals formed synapses with both labeled and unlabeled profiles, and their 

postsynaptic targets included somata, large and small dendritic shafts, and spines (Figures 

4.3.A. 4.4.C 4.7 and 4.8) (Table 4.1). Both asymmetrical (82%, 162/197) and 

symmetrical synapses (18%, 35/197) were observed, but asymmetrical synapses were 

more common (Figures 4.3.A, 4.4.C, 4.7 and 4.8) (Table 4.1). The main postsynaptic 

targets of MOR+ terminals were unlabeled spines (61%, 121/197, asymmetrical 97% 

symmetrical 3%), labeled spines (13%, 25/197, asymmetrical 80%, symmetrical 20%) 

and labeled small caliber dendritic shafts (13%, 25/197, asymmetrical 44%, symmetrical 

56%) (Figures 4.3.A, 4.4.C, 4.7) (Table 4.1). Some MOR + terminals form large 

asymmetrical synapses, suggesting that they might be glutamatergic (Figures 4.8.C-E) 

(LeDoux et al., 1991, Stefanacci et al., 1992, Brinley-Reed et al., 1995). 
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Figure 4.1 Light micrographs of MOR immunohistochemistry in the BLa using nickel-

DAB as a chromogen in an immunoperoxidase preparation.  A: Low power micrograph 

illustrating MOR immunohistochemistry in the BLa, lateral nucleus (La), central nucleus 

(Ce) and intercalated nuclei (stars) at bregma level -2.1. B: High power micrograph 

illustrating one MOR+ interneuron (arrow) and nearby MOR+ punctate structure (star), 

possibly a MOR+ dendritic shaft.  Scale bar=50μm in A; 10μm in B. 
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Note:  So-: Unlabeled Soma; LD-: unlabeled large dendrite (diameter ≥1μm); SD-: 

unlabeled small dendrite (diameter <1μm); Sp-: unlabeled spine; So+: MOR+ spines; 

LD+: MOR+ large dendrite (diameter ≥1μm); SD+: MOR+ small dendrite (diameter 

<1μm); Sp: MOR+ spines. 

 

 

 

 So- LD- SD- Sp- So+ LD+ SD+ Sp+ Total 

Asymmetrica

l MOR+ 

Synapses 

0 

 

0 

3 

 

1.9% 

8 

 

4.9% 

117 

   

72.3% 

1 

 

0.6% 

2 

 

1.2% 

11 

 

6.8% 

20 

 

12.3% 

162 

 

100% 

Symmetrical 

MOR+ 

Synapses 

2 

 

5.7% 

0 

 

0 

2 

 

5.7% 

4 

 

11.4% 

1 

 

2.9% 

7 

 

20% 

14 

 

40% 

5 

 

14.3% 

35 

 

100% 

Total MOR+ 

Synapses 

2 

1% 

3 

1.5% 

10 

5.1% 

121 

61.4% 

2 

1% 

9 

4.6% 

25 

12.7% 

25 

12.7% 

197 

100% 

 

 Table 4.1 Postsynaptic targets of MOR+ terminals in the BLa. 
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Figure 4.2 Histogram showing the number of each MOR+ structure observed in 

the quantitative analysis of the BLa. So: Soma; LD: large caliber dendrite 

(diameter ≥1μm); SD: small caliber dendrite (diameter <1μm); Sp: spine; T: 

terminal; Ax: axon; G: glial. 
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Figure 4.3 Electron micrographs of MOR+ somata in the BLa. A: A MOR+ soma (M-So) is 

contacted by a MOR+ terminal (M-t), forming a symmetrical synapse (arrow). MOR-ir is 

present near the Golgi apparatus. B: A MOR+ soma (M-So) receiving asymmetrical synaptic 

contacts from two unlabeled terminals (arrow). Arrowheads show granule MOR label. 

Arrowheads point to the MOR labeling. Scale bar=0.5μm. 
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Figure 4.4 Electron micrographs of MOR+ large caliber (≥1μm) dendrites. A: A 

large caliber MOR+ dendrite (M-LD) and two nearby small caliber MOR+ dendrites 

(M-SD) B: A large caliber MOR+ dendrite (M-LD) with a MOR+ spine (M-Sp). The 

spine suggests that this dendrite may belong to a pyramidal cell. C: A longitudinally 

sectioned large caliber MOR+ dendrite receives multiple asymmetrical synapses 

(arrow) from either MOR+ (M-t) or unlabeled (U-t) terminals, suggesting that this 

dendrite may belong to an interneuron. Arrowheads show granules of MOR label. 

Arrowheads point to the MOR labeling. Scale bar=0.5μm.  
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Figure 4.5 Electron micrographs of MOR+ small caliber (<1μm) 

dendrites. A: A long MOR+ small caliber dendrite (M-SD) and adjacent 

MOR+ (M-t) or unlabeled (U-t) axon terminals which both form 

asymmetrical synapses (arrows) with a MOR+ spine (M-Sp). There is 

another small caliber dendrite (M-SD) nearby. B: Two small caliber 

MOR+ dendrites (M-SD), one of which has a spine (Sp), suggesting that 

it might belong to a pyramidal cell. C: One small caliber MOR+ 

dendrites (M-SD) with a spine (Sp) contacted (stars) by a MOR+ 

terminal (M-t), suggesting it might belong to a pyramidal cell. There is 

another MOR+ terminal (M-t) nearby. Arrowheads show granules of 

MOR labeling. Scale bar=0.5μm.  

 



www.manaraa.com

 

59 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Electron micrograph of MOR+ spines. Two MOR+ spines receive 

asymmetrical synaptic contacts (arrows) from unlabeled terminals (Ut). Arrowheads 

show granules of MOR label. Arrowheads point to the MOR labeling. Scale bar=0.5µm. 
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Figure 4.7 Histogram showing the number of symmetrical (S, Black) or asymmetrical 

(AS, dark gray) synapses of MOR+ terminals with various MOR labeled (+) or 

unlabeled (-) structures. So: soma; LD: large caliber dendrite (≥1μm); SD: small caliber 

dendrite (<1μm); Sp: spine; 
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Figure 4.8 Electron micrographs of various postsynaptic 

targets of MOR+ terminals. A: A MOR+ terminal (M-t) 

forms a symmetrical synapse (arrows) with an unlabeled 

cell body (U-CB). There are two MOR+ small caliber 

dendrites (M-SD) nearby. B: A MOR+ terminal (M-t) form 

a symmetrical synapse (arrows) with a MOR+ small caliber 

dendrite (M-SD). C: Two MOR+ terminals (M-t) form 

asymmetrical synapses (arrows) with an unlabeled small 

caliber dendrite (U-SD) which also receives an 

asymmetrical synapse from an unlabeled terminal (U-t). 

Multiple asymmetrical synapses are indicative of 

interneuronal dendrite. D: A MOR+ terminal (M-t) form an 

asymmetrical synapse (arrows) with a MOR labeled spine 

(M-Sp). E: A MOR+ terminal (Mt) form an asymmetrical 

synapse (arrows) with a MOR labeled spine (M-Sp). 

Arrowheads show granules of MOR label. Arrowheads 

point to MOR label. Scale bar=0.5µm. 
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4.5 DISCUSSION: 

The electron microscopy analysis of MOR distribution in the BLa revealed that 

MOR-ir is present in diverse populations of neuronal profiles and glial processes as well. 

The most frequently labeled structures were small caliber dendrites and terminals. MOR+ 

terminals formed synapses with both labeled and unlabeled profiles. The main 

postsynaptic targets of MOR+ terminals forming asymmetrical synapses were unlabeled 

spines, while the main targets of MOR+ terminals forming symmetrical synapses were 

MOR+ small caliber dendritic shafts.  

4.5.1 ANATOMICAL CONSIDERATIONS 

The ultrastructural distribution of MOR in the BLa was consistent with previous 

MOR binding and immunohistochemistry studies in the amygdala, which revealed dense 

MOR binding and high level of MOR immunoreactivity in the basolateral amygdala. 

(Mansour et al., 1987, Ding et al., 1996). Similar to previous research in the central 

amygdala and a very limited analysis in the BLa (Glass et al., 2005, Glass et al., 2009), 

MOR immunoreactivity was found in both pre and post-synaptic neuronal profiles in the 

present study.  

Counts of MOR+ structures showed that small distal dendrites are most 

commonly labeled. Although we could not determine their cell type of origin based only 

on their anatomical features, some of these dendrites exhibited spines, a characteristic of 

pyramidal cell dendrites. In addition, the large numbers of spines and dendrites in the 

labeled profiles suggests that they are coming from pyramidal cells since 85% of BLa 

neurons are pyramidal cells (McDonald, 1992). Very few dendrites received multiple 

asymmetrical synaptic contacts, which is typical of interneurons. Together, these findings 
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indicate that most of the MOR+ dendrites appear to belong to pyramidal projection 

neurons, but some are interneurons.  

MOR+ terminals formed synapses with both labeled and unlabeled profiles, and 

their postsynaptic targets included somata, large and small caliber dendritic shafts, and 

spines. Both symmetrical and asymmetrical synapses were observed, but asymmetrical 

synapses were more common. Since most asymmetrical synapses are glutamatergic in the 

BLa (Pare et al., 1995), the majority of MOR+ terminals might be glutamatergic. 

Moreover the major postsynaptic targets of MOR+ terminals were spines, which is also 

the main target of glutamatergic projections to the BLa from cortical, thalamus and other 

nuclei of amygdala (LeDoux et al., 1991, Stefanacci et al., 1992, Brinley-Reed et al., 

1995), which further confirms this possibility. Additionally, it has been reported that 

opioids inhibit NE release in the amygdala during stress (Quirarte et al., 1998), thus some 

of MOR+ terminals might be noradrenergic, in particular those forming symmetrical 

synapses, which is the major synapse type formed by noradrenergic inputs in the BLa 

(Zhang et al., 2013).  

MOR labeling in our preparation was found to be more commonly associated with 

cytoplasmic organelles, but the MOR-ir was also found near the plasma membrane in 

many cases as well. MOR has to be inserted into membrane to be functional. Although 

the V-VIP particles do not represent the precise location of the antigen due to diffusion of 

the peroxidase reaction product, it is highly possible that the MOR-ir near the plasma 

membrane may reflect membrane-associated receptors and the ones associated with 

cytoplasmic organelles may serve as a reserve pool of MORs or be in the process of 

being transported to other parts of neurons. Actually, ultrastructural studies using 
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immunogold techniques, which provide more accurate antigen localization, have found 

that MOR-ir was located both in the cytoplasm and plasmalemma in the central lateral 

amygdala (Glass et al., 2009, Beckerman and Glass, 2011). Conversely, earlier 

immunogold studies reported that the MORs are almost exclusively located in 

plasmalemma in the striatal patch compartment (Wang et al., 1996, Wang and Pickel, 

2001) and the shell of nucleus accumbens (Gracy et al., 1997). Future studies using 

immunogold techniques are required to provide a more precise subcellular distribution of 

MORs in the BLa.  

4.5.2 FUNCTIONAL IMPLICATIONS 

The fact that MOR-ir was observed in both pre and post synaptic profiles suggests 

that MOR can modulate BLa neurons both pre and postsynaptically, which agrees with 

electrophysiological results indicating that MOR activation leads to membrane 

hyperpolarization and inhibits neurotransmitter release in the BLC (Sugita and North, 

1993, Faber and Sah, 2004, Finnegan et al., 2006). 

Although MOR activation is associated with inhibition of amygdala function 

(Liberzon et al., 2002) in general, the effects of MOR activation on the individual 

neurons is complicated. A previous study reported that MOR activation hyperpolarizes a 

subpopulation of neurons and inhibits GABA release in the lateral amygdala (LA) (Sugita 

and North, 1993), indicating that MOR may be located in the terminals of interneurons in 

the LA. Another study in the BLA found that activation of presynaptic MOR receptors 

primarily attenuates GABAergic inputs to the central amygdala projecting pyramidal 

cells in the BLA though Kv1.1/1.2 channels (Finnegan et al., 2006), which also suggest 

that the MOR activation probably occurs in interneuronal terminals. This is consistent 

with our observations that some of the MOR+ axon terminals in the BLa form 
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symmetrical synapses, typical of GABAergic inhibitory interneuron (McDonald and 

Mascagni, 2002). This MOR induced GABA release inhibition, and hence pyramidal cell 

disinhibition, may also contribute to stress associated hypoalgesia through the BLA-

central amygdala- PAG pathway (Hopkins and Holstege, 1978, Rizvi et al., 1991, Harris, 

1996). Moreover, we also observed a few MOR+ interneurons, which may be part of the 

hyperpolarized subpopulation during MOR activation in the earlier study (Sugita and 

North, 1993). Additionally, many MOR+ dendrites in present preparation have been 

found to give rise to spines, which is characteristic of pyramidal cells.  These MORs in 

dendrites may modulate pyramidal cell excitability via affecting potassium channels, 

which have been shown in the LA (Faber and Sah, 2004).  

Considering that dendritic spines of pyramidal cells in the BLa are also the major 

target of excitatory inputs from the cortex, thalamus and pyramidal neurons of the LA 

and BLA (LeDoux et al., 1991, Stefanacci et al., 1992, Brinley-Reed et al., 1995), MOR 

might be involved in modulating the effects of these inputs to BLa pyramidal cells. In 

fact, MORs have been found to be closely colocalized with glutamatergic receptors in the 

BLa (Glass et al., 2005), which may contribute to the neuronal plasticity in the amygdala 

related to opioid addiction (Scavone et al., 2011). Spines in the BLa are also major neural 

compartments receiving modulatory inputs such as cholinergic, norepinephrine, 

dopamine and serotonin (Muller et al., 2011, Zhang et al., 2013) (Muller et al., 2007, 

2009)  indicating that MOR could postsynaptically influence their effects on the BLa as 

well.     

The majority of the asymmetrical synapses formed by MOR+ terminals may be 

glutamatergic  since most asymmetrical synapses are glutamatergic in the BLa (Pare et al., 
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1995). It is highly possible that MORs may be involved in modulation of glutamate 

release in the BLa.  Some of the symmetrical synapses formed by MOR+ terminals might 

be noradrenergic. A recent ultrastructural study demonstrated that noradrenergic inputs 

mainly form symmetrical synapses in the BLa (Zhang et al., 2013). MORs in 

noradrenergic terminals might explain the effects of opioid peptidergic drug 

administration on norepinephrine release in the amygdala (Quirarte et al., 1998), which is 

thought to be the major way that opioids are involve in memory modulation during stress 

(Introini-Collison et al., 1995, McGaugh, 2004).  
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CHAPTER 5 

LIMITED CONVERGENCE OF ENKEPHALIN AND NOREPINEPHRINE INPUTS IN THE 

RAT BASOLATERAL AMYGDALA 

5.1 INTRODUCTION 

Accumulating evidence indicates that norepinephrine (NE) and opioid systems in 

the amygdala are heavily involved in stress adaptation and memory consolidation of 

emotionally arousing experiences (Introini-Collison et al., 1995, Drolet et al., 2001, 

McGaugh, 2004, Roozendaal et al., 2009). Studies have shown that stressful stimuli such 

as footshock induce norepinephrine release in the rat amygdala (Galvez et al., 1996, 

Quirarte et al., 1998). Moreover, post-training drug treatment studies using adrenergic 

agonists and antagonists indicate that activating the NE system in the basolateral 

amygdala enhances memory retention of inhibitory avoidance (Ferry and McGaugh, 

1999, McGaugh, 2004, Ferry and McGaugh, 2008).  

Endogenous opioid peptides include endorphin, enkephalin (ENK) and dynorphin 

derived from three peptide precursors, proopiomelanocortin (POMC), proenkephalin 

(ProEnK) and prodynorphin (ProDyn), respectively (Stefano et al., 2000, Drolet et al., 

2001). These opioid peptides produce their effects via three types of G-protein coupled 

receptors: mu, delta and kappa. Preproenkephalin knockout mice elicit stronger anxiety 

and depressive PTSD-like symptoms than wild type animals (Kung et al., 2010). In 

addition, the opiate antagonist naloxone has been found to enhance memory retention in 

inhibitory avoidance and this effect could be reversed by mu opiate receptor (MOR) 
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agonists (Izquierdo and Graudenz, 1980, Introini-Collison et al., 1989, Introini-Collison 

et al., 1995). The memory regulating effects of opioids are believed to be mediated 

through the modulation of the NE system, since intra-amygdala activation of MORs 

impairs memory by inhibiting NE release, and facilitating NE function compensates this 

memory impairment effects (Introini-Collison et al., 1995). Considering the sparse 

projection to the BLa from beta-endorphin expressing neurons in hypothalamus (Gray et 

al., 1984), ENK may be the major endogenous opioid peptide which is involved in the 

memory modulation function of MORs  in the amygdala.  

The major postsynaptic targets of NE inputs in the BLa  are distal dendrites and 

spines (Zhang et al., 2013), which are also the main MOR+ profiles (results from chapter 

4). Thus it is possible that NE inputs and ENK inputs may both synapse with these 

postsynaptic structures, similar to the locus ceruleus where ENK and epinephrine 

terminals converge on the same structures (Van Bockstaele et al., 1996). However, there 

have been no ultrastructural studies examining the convergence of NE and ENK 

terminals in the BLa. Also, there have been no previous electron microscopy 

investigations of ENK in the BLa.  All the previous studies have concentrated on 

examining the presynaptic interaction of ENK and NE system (Izquierdo and Graudenz, 

1980, McGaugh et al., 1988, Introini-Collison et al., 1989, Introini-Collison et al., 1995, 

Quirarte et al., 1998). The present study utilized dual-immunocytochemistry staining 

combined with electron microscopy to investigate the extent of the convergence of NE 

and ENK terminals onto common structures in the BLa, which will provide information 

about whether there may also be postsynaptic interactions of NE and ENK in the BLa. 
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5.2 HYPOTHESIS 

There may be convergence of NE and ENK inputs on distal dendritic shafts and spines of 

BLa neurons.  

5.3 METHODS 

5.3.1 TISSUE PREPARATION 

Five male Sprague-Dawley rats weighing 250-350g were used in this study. Rats 

were handled in accordance with the principle of laboratory animal care and protocols 

approved by the University of South Carolina Institutional Animal Care and Use 

Committee. Brain tissue was prepared as described in previous studies of our lab (Muller 

et al., 2011) . Rats were anesthetized with a ketamine mixture (ketamine: 85mg/kg; 

xylazine: 8mg/kg; acepromazine: 4mg/kg) and perfused intracardially with PBS 

containing 1% sodium nitrite, followed by 2% paraformaldehyde-3.75% acrolein in 

phosphate buffer (PB) for 1 minute, followed by 2% paraformaldehyde in PB for 20 

minutes. Brains were removed and post-fixed in 2% paraformaldehyde for one hour. 

Brains were sectioned on a vibratome in the coronal plane at 60μm. 

5.3.2 LIGHT MICROSCOPY IMMUNOHISTOCHEMISTRY  

Single-label localization of ENK was performed in two rats using a rabbit 

antibody to methionine-enkephalin (met-ENK) (1:1000, ImmunoStar, Hudson, WI). All 

antibodies were diluted in PBS containing 0.4% Triton X-100 and 1% normal goat 

serum. Sections were incubated in the primary antibody overnight at 4℃ and then 

processed for the avidin-biotin immunoperoxidase technique using a biotinylated goat 

anti-rabbit secondary antibody (1: 500, Jackson Immunoresearch Laboratories, West 

Grove, PA) and a Vectastain standard ABC kit (Vector laboratories, Burlingame, CA) 
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with nickel-intensified 3,3 -́diaminobenzidine 4HCl (DAB, Sigma Chemical Co., St. 

Louis, MO, USA) as a chromogen to generate a black reaction product (Hancock, 1986). 

After the reactions, sections were mounted on gelatinized slides, dried overnight, 

dehydrated in ethanol, cleared in xylene, and coverslipped in Permount (Fisher Scientific, 

Pittsburgh, PA, USA). Sections were analyzed with a Nikon E600 microscopy system 

and digital light micrographs were taken with a Micropublisher digital camera. 

5.3.3 DOUBLE LABELING ELECTRON MICROSCOPY 

IMMUNOHISTOCHEMISTRY  

Double labeling immunohistochemistry was performed to detect the convergence 

extent of NE and ENK terminals in the BLa at the electron microscopy level. To enhance 

penetration of antibodies, sections were incubated with low level of Triton-X-100 

(0.02%) in the antibody dilutions. Section were incubated in a mouse monoclonal NET 

antibody (1:2000 NET-05,  obtained from Dr. Randy D. Blakely, Vanderbilt University 

Medical Center) overnight at 4℃ after 30 minutes in a blocking solution (PBS containing 

3% normal goat serum , 1% BSA and 0.02% Triton-X), and then processed using a 

biotinylated goat anti-mouse antibody (Jackson ImmunoResearch, West Grove, PA) and 

a Vectastain standard ABC kit (Vector Laboratories, Burlingame, CA) with 3,3 -́

diaminobenzidine 4HCl (DAB, Sigma Chemical Co., St. Louis, MO, USA)  as the 

chromogen. After rinsing, sections were incubated in an avidin/biotin blocking solution 

(Vector Laboratories, Burlingame, CA). Sections were then incubated overnight at 4℃ in 

rabbit anti-met-enkephalin antibody (1:1000, ImmunoStar) to label ENK structures. For 

ENK immunohistochemistry, sections were processed using a biotinylated goat anti-

rabbit secondary antibody (1: 500, Jackson Immunoresearch Laboratories, West Grove, 
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PA) and an Elite ABC kit (Vector Laboratories, Burlingame, CA), with  Vector-VIP as a 

chromogen. This process produces a reaction product that appears purple at the light 

microscopy level and granular at the electron microscopy level. It was easily 

distinguished from the diffuse DAB immunoperoxidase reaction product at the 

ultrastructural level.  

5.3.4 PROCEDURE FOR ELECTRON MICROSCOPY 

After the immunohistochemical reactions, sections were then  post-fixed in 2% 

osmium tetroxide in 0.16 M sodium cacodylate buffer for one hour, dehydrated in ethanol 

and acetone, and flat embedded in Polybed 812 (Polysciences, Warrington, PA) in slide 

molds between sheets of Aclar (Ted Pella, Redding, CA). Selected areas of the BLa were 

remounted onto resin blanks. Silver thin sections were collected on formvar-coated slot 

grids, stained with uranyl acetate and lead citrate and examined with a JEOL-200CX 

electron microscope. Micrographs were taken with an AMT XR40 digital camera system 

(Advanced Microscopy Techniques, Danvers, MA). 

5.3.5 ANALYSIS 

Vibratome sections from three rats (one for each animal) with the best labeling 

quality were selected for thin sectioning and analysis. From these thin sections, areas 

with the best morphology and robust presence of both NET and ENK labels were chosen 

for quantitative analysis. During data collection, each NET + terminal was centered in the 

field and then MOR+ terminals in the same field as the NET+  terminal were counted and 

used for analysis. All the pictures were taken at the 36,000 magnification in which the 

area of each field is around 4.4×5.5 μm
2
. Labeled terminals were followed for 3 to 11 

serial thin sections. Contacts of NET+ and ENK+ terminals with ENK labeled or 
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unlabeled neuronal structures in the BLa were classified as either synapses or apposition.  

Synapses were identified using standard criteria: 1) parallel presynaptic and postsynaptic 

membranes exhibiting membrane thickening, 2) clustered vesicles associated with the 

presynaptic membrane, and 3) a synaptic cleft containing dense material. Contacts which 

did not meet these criteria were identified as appositions. Asymmetrical and symmetrical 

synapses were identified based on the presence or absence of a prominent postsynaptic 

density and the widths of their synaptic clefts. Asymmetrical synapses usually have wider 

synaptic clefts (20nm) than symmetrical ones (12nm) (Peters A, 1991).  Postsynaptic 

neuronal profiles receiving synapses from ENK-labeled terminals were identified as 

ENK- labeled or unlabeled somata, large caliber dendritic shafts (diameter ≥1μm), small 

caliber dendritic shafts (diameter <1μm), or spines according to established 

morphological criteria (Peters A, 1991). The percentage of labeled terminals (NE or 

ENK) contacting a common structure was determined. In addition, the percentage of 

terminals contacting each other was determined as well.  

5.3.6 ANTIBODY SPECIFICITY  

The mouse monoclonal anti-NET primary antibody (1:2000 NET-05, obtained 

from Dr. Randy D. Blakely, Vanderbilt University Medical Center) used in this study was 

raised against amino acids 5-17 of the amino-terminus of mouse NET. Specificity of this 

antibody has been demonstrated by absence of immunolabeling in NET knock out tissue 

or following pre-adsorption in previous studies (Matthies et al., 2009, Erickson et al., 

2011).   

The met-enkephalin antibody used in present study has been well documented in 

the previous studies (Wilson et al., 2002). It has very limited recognition of leucine-ENK 
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and has no cross reaction with endorphin or dynorphin (Cheng et al., 1995, Wilson et al., 

2002). 

Two control groups were used in the experiment. First group omitted ENK 

primary antibody but was performed all the same procedure as double labeling group, 

second group omitted NET primary antibody but was performed all the same procedures 

as the double labeling group. No purple labels were observed in the first group. No DAB 

labels were observed in the second group. Therefore the secondary antibodies were 

specific for mouse or rabbit IgG.  

5.4 RESULTS 

5.4.1 LIGHT MICROSCOPY OBSERVATIONS 

At the light microscopy level, ENK immunoreactivity (ENK-ir) presents a 

distribution pattern which is similar to the observation in a previous study (Wilson et al., 

2002). Dense neuropil staining was found in the neuropil of the intercalated nuclei 

(Figure 5.1.A). ENK+ somata were observed mainly in the central nucleus and only a few 

ENK+ nonpyramidal interneurons were found in the lateral and basolateral amygdala 

(Figure 5.1), which is consistent with results of a preproenkephalin mRNA binding study 

(Harlan et al., 1987).  Moderate neuropil labeling was found in the central amygdala but 

there was only very light neuropil labeling in lateral and basolateral amygdala 

(Figure5.1.A).    

5.4.2 ELECTRON MICROSCOPY OBSERVATIONS 

Dual labeling using ENK and NET antibodies show that both labels are 

concentrated in terminals (Figures 5.2-5.4). ENK immunoreactivity (ENK-ir) was also 

seen in somata, dendrites, spines and axons (Figures 5.2 and 5.3.A).  ENK terminals were 
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round to ovoid with small vesicles that were round and clear (Figures 5.2.A, 5.3 and 5.4). 

About 70% (110/157) of ENK+ terminals formed synapses with either ENK+ or 

unlabeled structures (Figures 5.2.A, 5.3 and 5.4.A). Postsynaptic targets of these ENK+ 

terminals included ENK+ and unlabeled dendritic shafts and spines (Figures 5.2A, 5.3 

and 5.4.A). ENK+ terminals mainly formed asymmetrical synapses and their most 

frequent targets were the ENK+ or unlabeled spines (Figures 5.2.A). In a few cases 

symmetrical synapses formed by ENK+ terminals were observed and most of them were 

with small distal dendritic shafts (Figures 5.3.A).  

NET+ profiles consisted of thin unmyelinated axons and varicosities containing 

synaptic vesicles (Figures 5.2-5.4). The peroxidase reaction product was distributed 

throughout these NET + profiles, with accumulations near the plasma membrane and the 

outer membrane of vesicles and mitochondria. This diffuse DAB reaction product was 

easily distinguished from the particulate Vector-VIP reaction product of ENK labeling. 

NET+ terminals were round or ovoid in shape with closely packed small, round clear 

synaptic vesicles, sometimes associated with large clear vesicles, similar to the 

descriptions of DBH+ profiles and NET+ profiles reported in previous studies of the 

basolateral amygdala (Asan, 1998, Li et al., 2001, Li et al., 2002, Farb et al., 2010, Zhang 

et al., 2013).  NET terminals mainly formed symmetrical synapses and they targeted both 

ENK+ and unlabeled structures, including, dendritic shafts, spines and somata, consistent 

with previous studies (Li et al., 2001, Li et al., 2002, Zhang et al., 2013).  

There was a very limited convergence of NET and ENK inputs in the BLa. 11% 

of ENK terminals (17/157) contacted a common neuronal structure with an NET terminal 

in the same field (Figures 5.3-5.5). The targets and types of contacts formed by 
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converging terminals were described in Table 5.1. In general, the most frequent common 

targets were small caliber dendritic shafts and spines (Figures 5.3 and 5.4) (Table 5.1). 

For one case, NET+ and ENT+ terminals contacted the same ENK+ cell body. Similarly, 

a large caliber dendritic shaft was observed only once to be a common target of NET and 

NET terminals. In most instances of convergence, ENK+ terminals formed asymmetrical 

synapses or appositions whereas NET+ terminals formed symmetrical synapses or 

appositions (Figures 5.3 and 5.4) (Table 5.1). In addition, NET+ and ENK+ terminals 

contacted each other in five cases (Figures 5.3.B and 5.4.B)  
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Figure 5.1 Light micrographs of ENK immunohistochemistry in the BLa using nickel 

DAB as a chromogen in an immunoperoxidase preparation. A: Low power micrograph 

illustrating ENK immunohistochemistry in the BLa, lateral nucleus (La), central 

nucleus (Ce) and intercalated nuclei (stars) at bregma level-2.1.B: Higher power 

micrograph of the boxed area in A, illustrating several ENK+ interneurons (arrows). C: 

High power micrograph illustrating an ENK+ interneuron (arrow) and its processes 

(stars). Punctate ENK+ structures (arrow head) maybe ENK+ axon terminals. Scale 

bar=100μm in A, 50μm in B, 10μm in C. 
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Figure 5.2 Electron micrographs of the BLa 

immunostained for NET and ENK.  A: A NET+ 

terminal (t-NET) and an ENK+ terminal (t-ENK) 

are found in the same field, but they do not target 

the same structure. The ENK+ terminal forms an 

asymmetrical synapse (arrow) with an unlabeled 

spine (U-sp). The NET terminal contacts (asterisk) 

an ENK+ small caliber dendrite (ENK-SD). There 

are also an ENK+ spine (ENK-Sp) and ENK+ small 

caliber dendrite (ENK-SD) in this field.  B: A 

NET+ terminal forms an apposition (asterisk) with 

an ENK+ small caliber dendrite (ENK-SD) and a 

spine (Sp) arising from it. There is an ENK+ spine 

(ENK-Sp) and an ENK+ myelinated axon (ENK-

Ax) nearby as well. Arrowhead indicates Vector 

VIP granule labeling. Scale bar=0.5μm. 
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Figure 5.3 Electron micrographs showing synaptic convergence of NET+ and ENK+ 

terminals in the BLa. A: A NET+ terminal (t-NET) and an ENK+ terminal (t-ENK) 

target (arrow) the same ENK+ small caliber dendrite (ENK-SD), both forming 

symmetrical synapses (arrows). ENK labeling in this small dendrite is much more 

obvious in the adjacent sections. B: An unlabeled spine (U-Sp) receives symmetrical 

synapses (arrows) from NET+ and ENK + terminals. Arrowheads indicate V-VIP 

granule labeling. Scale bar=0.5μm. 
 



www.manaraa.com

 

79 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Electron micrographs showing convergence of NET+ and ENK+ terminals 

in the BLa.  A:  A NET+ terminal (t-NET) forms a symmetrical synapse (arrow) with 

an unlabeled small caliber dendrite (U-SD). An ENK+ terminal (t-ENK) form an 

apposition (asterisk) with the same dendrite. B: A NET+ terminal and an ENK+ 

terminal form appositions with an unlabeled SD (U-SD) and with each other. 

Arrowheads indicate V-VIP granule labeling. Scale bar=0.5μm.  
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Summary of Structures Contacted By 

Converging ENK+ and NET+ Terminals 

Figure 5.5 Histogram showing numbers of each type of neuronal profiles in 

the BLa contacted by converging ENK+ and ENT+ terminals. +: ENK 

labeled; -:  unlabeled; So: soma; LD: large caliber dendrite (diameter 

≥1μm); SD: small caliber dendrite (diameter <1μm); Sp: spine; 
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ENK+ 

Terminals 

Target ENK 

Contact 

NET 

Contact 

EM08-T1 Sp+ AS S 

EM08-T2 Sp+ AS S 

EM08-T16 Sp- AS Apposition 

EM08-T19 Sp- AS S 

EM08-T21 SD+ AS S 

EM08-T22 SD+ S S 

EM08-T24 Sp+ AS Apposition 

EM08-29b SD- Apposition S 

EM08-T31 SD+ Apposition Apposition 

EM10-T07 LD+ Apposition Apposition 

EM10-T13 SD- AS Apposition 

EM10-T25 So+ Apposition S 

EM11-T04-a SD+ S Apposition 

EM11-T04-b SD+ Apposition S 

EM11-T07 SD- Apposition S 

EM11-T42 Sp- S S 

EM11-T50 Sp+ AS Apposition 

 

Note: +: ENK labeled; -: unlabeled; So: soma; LD: 

large caliber dendrite (diameter ≥1μm); SD: small 

caliber dendrite (diameter <1μm); Sp: spine; S: 

symmetrical synapse; AS: asymmetrical synapse. 

 

 

 

 
 

Table 5.1 Targets and types of contacts of converging 

ENK+ terminals and NET+ terminals in the BLa. 
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5.5 DISCUSSION 

This is the first investigation to study the ultrastructural localization of ENK in 

the BLa and also the first investigation to study the possible convergence of NET and 

ENK axon terminals onto common structures in the BLa. Our results show a limited 

convergence. 

5.5.1 ANATOMICAL CONSIDERATIONS 

ENK axon terminals mainly formed asymmetrical synapses indicating that they 

most likely derived from glutamatergic axons, which is consistent with the previous 

study showing that more than 95% of ENK+ cells in the BLa expressed vGLUT1 (Poulin 

et al., 2008). Since glutamatergic pyramidal cells are the major neuron type in the BLa 

(McDonald, 1992), it is possible that some of ENK+ terminals forming asymmetrical 

synapses are coming from local collateral axons of pyramidal cells. Additionally, the BLa 

is one of the amygdaloid divisions that send ENK projections to the central amygdala, 

indicating that at least some of the projection neurons in the BLa express ENK (Poulin et 

al., 2006). Another possible origin of these ENK+ terminals are extra glutamate inputs 

from thalamus and cortex. Very few ENK+ axon terminals formed symmetrical synapses, 

characteristic of GABAergic synapses. These terminals may belong to BLa interneurons 

or neurons of the intercalated nucleus, since BLa neurons are under the inhibitory control 

of the intercalated neurons and there are extensive colocalization of preproenkephalin 

mRNA and GAD mRNA in the intercalated nuclei (Royer et al., 1999, Poulin et al., 

2008) .  

ENK+ terminals predominantly formed asymmetrical synapses with ENK+ spines 

and distal dendrites, but formed symmetrical synapses with dendritic spines as well. This 

synaptic organization is similar to the inputs to pyramidal cell observed before in the BLa  
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(Brinley-Reed et al., 1995), indicating that ENK terminals mainly synapse on pyramidal 

cells, which give rise to most of the spines in the BLa (McDonald, 1992).  

ENK-ir was also found in various postsynaptic neuronal structures, including 

somata, axons, dendritic shafts and spines. ENK-ir was also seen in spiny dendrites in the 

striatum, which is thought probably to be related to spine plasticity (McCollum et al., 

2012). The function of ENK located in postsynaptic compartment of BLa neurons and 

striatal neurons is not clear.  

We found very limited convergence of ENK and NET terminals in the BLa. The 

extent of convergence may be underestimated due to incomplete terminal analysis. The 

convergence will be missed if the observing plane is not favor for analyzing convergence.   

5.5.2 FUNCTIONAL IMPLICATIONS 

Our observations reveal that ENK terminals predominantly form synapses with 

distal dendrites and spines, which probably originate from pyramidal cell in the BLa. 

Interestingly, MOR activation has been reported to participate in determining the normal 

morphology and function of spines in the hippocampus, which could also occur in the 

amygdala as well through the abundant synaptic contacts of ENK terminals with spines 

(Liao et al., 2005). Moreover, distal dendrites and spines of pyramidal cells are also the 

major neuronal compartment of BLa neurons receiving glutamatergic inputs from cortex, 

thalamus and other nuclei of amygdala and are also targeted by neuromodulatory systems 

(LeDoux et al., 1991, Stefanacci et al., 1992, Brinley-Reed et al., 1995, Muller et al., 

2011, Zhang et al., 2013), indicating that the ENK could involve in the modulation of 

these inputs.  

Although we observed very limited convergence between ENK and NET 

terminals, if these converging ENK and NET terminals are activated simultaneously, they 
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could act concomitantly on the neuronal activity of targeted BLa neurons. Nevertheless, 

the low rate of convergence suggests that postsynaptic interaction may not the major way 

that these two systems affect each other, at least not by point to point interaction. 

Moreover, considering that ENK as a peptide neurotransmitter could diffuse in the 

extracellular space and act on distant targets by volume transmission, it is also possible 

that ENK could possibly affect NE terminals in this way.  

Opioid receptors and adrenoceptors are both G protein coupled receptor; their 

activation triggers a cascade of cell signaling response. If they are closely colocalized in 

neuronal profiles, they may affect each other via the interactions of the cell signaling 

pathways. Earlier studies suggested that MOR and DOR may colocalize with α2 

adrenoceptor in a subpopulation of neurons in central and posterior portion of the medial 

amygdala, which may relate to the alleviation of opiate withdrawal symptoms by α2 

adrenergic agonist (Freedman and Aghajanian, 1985). Farb reported that β adrenoceptors 

are present in the somata, dendritic shafts and spines in the lateral amygdala neurons 

(Farb et al., 2010). Our findings in chapter 4 indicate that MORs also exist in various 

postsynaptic compartment in the BLa.  Because of the similarity of cell type and 

synaptology between lateral and basolateral amygdala, it is possible that MOR and β 

adrenoceptors might colocalize in the BLa as well, which provide an opportunity of  two 

receptors affecting each other through cell signaling pathway.  

There were five cases of ENK+ terminals directly contacting NET+ terminals. 

Although previous investigations revealed that MOR activation inhibits NE release in the 

BLa (Introini-Collison et al., 1995), this very low rate of direct contact indicates that 

there are few, if any ENK+ axon terminals affecting NET release. However, ENK maybe 
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released into extra-synaptic space and then diffuse to the NET terminals. Thus it will be 

interesting to see whether there is expressing of MOR or DOR on the NET terminals.  
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CHAPTER 6 

GENERAL DISCUSSION 

6.1 SUMMARY 

In general, we have the following major findings in these studies. First, about half 

of NET+ axon terminals form synapses in the BLa and the major targets of these 

terminals were distal dendritic shafts and spines of pyramidal cells. The low synaptic 

incidence indicates that non-synaptic diffusion might be involved in NE modulation of 

BLa functions.  The fact that NE inputs target the same neuronal compartment as 

glutamatergic projections to the BLa indicates a possible involvement of NE in long term 

potentiation, which is the cellular mechanism of memory potentiation. Second, MOR-ir 

was found in various neuronal profiles and the most frequent labeled structures were 

small caliber dendrites and terminals. Both symmetrical and asymmetrical synapses were 

formed by MOR+ terminals, while the asymmetrical ones were more commonly 

observed.  The postsynaptic targets of MOR+ terminals included a variety of labeled or 

unlabeled neuronal profiles as well, but MOR+ terminals primarily targeted spines with 

or without MOR-ir, as well as MOR+ small distal dendrites. These data suggest that 

MOR is involved in both presynaptic and postsynaptic modulation of neuronal activity in 

the BLa.  Third, there was very limited (11%) convergence between ENK+ and NET+ 

terminals. In addition, our results also reveal that ENK+ axon terminals mainly form 

asymmetrical synapses in the BLa, indicating that most of ENK+ terminals might be 

glutamatergic.  
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6.2 FUNCTIONAL IMPLICATION RELATED TO MEMORY CONSOLIDATION 

DURING STRESS 

Extensive evidence indicates that the amygdala is a key center mediating the 

modulatory effects of hormones and neurotransmitters on memory consolidation, which 

selectively occur in the BLa nucleus, the focus of this dissertation (Roozendaal et al., 

2009). The interactions of several modulatory systems converge in influencing NE and 

muscarinic cholinergic activations in the BLa and therefore modulate the memory 

consolidation in the BLa and other brain areas that receive projections from the BLa 

(McGaugh, 2004).  

The BLa receives a dense noradrenergic projection primarily originating from the 

LC (Asan, 1998). LC neurons fire in two distinct activity modes: tonic and phasic. LC 

neurons exhibit phasic responses to salient sensory stimuli such as foot shock, which 

have a relatively short latency (Berridge and Waterhouse, 2003). Most of the behavioral 

paradigms using acute stressful or emotional stimuli might elicit the phasic response, 

whereas the chronic stress model might highly relate to tonic responses. The synaptic 

formations we observed in the present study probably contribute to the NE release during 

phasic mode, whereas volume transmission might be more involved in regulating the 

tonic activity of LC neurons.  

We found that distal dendritic shafts and spines of pyramidal cells are the major 

postsynaptic targets of NE inputs in the BLa, which is also the main target of excitatory 

inputs to CaMK+ pyramidal cells arising from cortical, thalamic and intra-amygdalar 

sources (LeDoux et al., 1991, Stefanacci et al., 1992, Brinley-Reed et al., 1995). In 

addition, previous studies in rat BLa have shown that both pyramidal cells and 
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nonpyramidal cells exhibit high levels of NMDA receptor subunit1 (NMDAR1) in their 

dendrites and spines (Farb et al., 1995, Radley et al., 2007). Thus, NE inputs are in a 

position to modulate synaptic plasticity in synapses forming by these various projections 

via modulating NMDAR currents. Moreover, we found that small distal dendrites were 

commonly labeled by MOR+ and many of them exhibited spines, a characteristic of 

pyramidal cell dendrites. Since 85% of BLa neurons are pyramidal cells (McDonald, 

1992), this suggests that most of the MOR+ dendrites might belong to pyramidal cells in 

the BLa. Therefore, MOR is in a position to affect synaptic plasticity like NE inputs 

probably via eliciting membrane hyperpolarization. In addition, our ENK labeling results 

reveal that most of ENK axon terminals form asymmetrical synapses in the BLa 

indicating they most likely are derived from glutamatergic axons, which might come in 

part from local collateral axons of pyramidal cells, or inputs from thalamus and cortex. 

These extra amygdala inputs have been found to primarily target the distal dendritic part 

of pyramidal cells where the MOR was located according to our results. Thus, ENK 

released from glutamatergic inputs to pyramidal cells may activate MORs in pyramidal 

cells.   

Large numbers of MOR+ terminals indicate that MOR is highly involved in the 

presynaptic regulation of the BLa as well. These MOR+ terminals commonly formed 

asymmetrical synapses and primarily targeted spines, which are characteristics of 

glutamatergic projections to the BLa from cortical, thalamus and other nuclei of 

amygdala (LeDoux et al., 1991, Stefanacci et al., 1992, Brinley-Reed et al., 1995) as 

mentioned above. Therefore, it is highly possible that MORs may be involved in 

modulation of glutamate release in the BLa.  Some of the MOR+ terminals forming 
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symmetrical synapses might be NE terminals, since NE inputs mainly formed 

symmetrical synapses in the BLa as our results have shown (Zhang et al., 2013).  This 

might explain the effect of opioid peptidergic drug administration on NE release in the 

amygdala (Quirarte et al., 1998) , which is believed to be that major way that opioids are 

involved in memory modulation during stress (Introini-Collison et al., 1995, McGaugh, 

2004).  

Previous studies have concentrated on examining the presynaptic interactions of 

the ENK and NE systems. Our studies of convergence were designed to investigate their 

postsynaptic interactions. We found a limited convergence between ENK+ and NET+ 

terminals and in most cases of convergence, ENK+ formed asymmetrical synapses or 

appositions whereas NET+ terminals formed symmetrical synapses. It appears that 

postsynaptic interaction may not be the major way that these two systems affect each 

other, at least not by point to point interactions. Because ENK as a peptide 

neurotransmitter that could diffuse in the extracellular space and act on distant targets by 

volume transmission, it is possible that ENK could affect NE terminals in this way. 

Especially, our results show a relatively diverse distribution of MOR in the BLa that 

could be activated by ENK. 

Except for regulating the plasticity inside the amygdala, NE system activation in 

the BLa could also be involved in memory consolidation in other brain areas. For 

example, the caudate-putamen is related to learning specific cues while the hippocampus 

is associated with spatial learning and context conditioning (Packard et al., 1994, Packard 

and Teather, 1998). Both types of learning in both areas are modulated by the BLa 

(Packard et al., 1994, Packard and Teather, 1998) . The BLa is thought to influence their 
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functions via the extensive efferents arising from BLa pyramidal cells, which are the 

major projection neurons in the BLa. Thus the excitability of BLa pyramidal cells is 

critical for memory consolidation. β-adrenoceptors have been shown to mediate both the 

memory consolidation effects  and the excitatory effects of NE in the BLa (Gean et al., 

1992, Huang et al., 1996, Ferry et al., 1997). On the contrary, α2-adrenoceptors seems to 

produce inhibitory effects. The two kinds of synapses we observed in our NET labeling 

studies, i.e., symmetrical and asymmetrical synapses, might represent the different 

adrenoceptors.  

Interestingly, only small populations of pyramidal cells were excited by NE in the 

BLa via β-adrenoceptors (Buffalari and Grace, 2007). Moreover, an earlier study 

suggested that memory facilitation effects of post-training systemic administration of 

naloxone might be mediated via release of the beta-adrenergic effects from the tonic 

inhibitory influence of endogenous opioids (Izquierdo and Graudenz, 1980). We 

observed a very limited convergence between ENK + and NET+ terminals. It is possible 

that the small population of the BLa neurons excited by NE are receiving the converging 

ENK inputs and thus under inhibitory control of enkephalin, whereas the naloxone blocks 

the MOR activation  and thus terminate the inhibitory effects of ENK inputs, therefore 

BLa neurons were excited by NE via β-adrenoceptors activation.  

6.3 FUNCTIONAL IMPLICATION RELATED TO HYPOALGESIA 

We also found that some MOR+ axon terminals form symmetrical synapses, 

indicating they may come from interneurons. Previous study has shown that activation of 

presynaptic MOR could attenuate GABAergic inputs to the central amygdala projecting 

pyramidal neurons in the BLA (Finnegan et al., 2006) . This pyramidal cell disinhibition 
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might contribute to stress associated hypoalgesia through the BLA-central amygdala-

PAG pathway.  

6.4 FUNCTIONAL IMPLICATION RELATED TO PTSD 

The NE system and opioid system mainly affect pyramidal cells in the BLa 

according to our results, which was summarized in Figure 6.1. NE, ENK and MOR 

labeled terminals predominantly synapse with the distal small caliber dendritic shafts and 

spines in the BLa, indicating that they are at the position that could regulate the effects of 

specific input and thus might differentially modulate memory consolidation about 

information from different sources in the BLa. This might explain why the PTSD patients 

remember certain significant cues during traumatic experiences and later on this trauma 

related cue becomes a trigger for maladaptive defensive behaviors in those patients. One 

promising direction for PTSD treatment is pharmacologically intervention initiated soon 

after trauma exposure, which could reduce or eliminate the development of the PTSD in 

some traumatized individuals (Lindgren et al., 2013) (Cukor et al., 2009). The β-

adrenoceptor antagonist propranolol has been found to decrease the strength of newly 

acquired emotional memory both in experimental trials and clinical samples 

(Chamberlain et al., 2006) (Lindgren et al., 2013). Moreover, the acute administration of 

morphine has been found to limit fear conditioning in patients with traumatic injury 

(Bryant et al., 2009). Similarly, another study in combat injury also reported that 

morphine used during early trauma care could reduce the subsequent development of 

PTSD (Holbrook et al., 2010). This early stage intervention might function through 

blocking the facilitation of synaptic plasticity in the synapses formed by salient sensory 

inputs. As a result, this intervention might change the emotional valence of these salient 
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stimuli and therefore prevent the enhancement of the related memory. Moreover, the 

individual differences at this step might contribute to the individual differences in 

susceptibility for PTSD.  

In addition, NE and ENK both target the somata and proximal large caliber 

dendrites of pyramidal neurons in some cases in the BLa. This suggests that they could 

directly control the firing of the BLa pyramidal cells and therefore affect synaptic 

plasticity in other brain areas receiving projections from them. Thus, the output pathway 

of these pyramidal cells is critical for determining what kind of memory is enhanced. It 

has been reported that stress and anxiety can enhance dorsal striatal-dependent habit 

memory but impede the hippocampal-dependent cognitive memory, which explains some 

aspects of PTSD (Goodman et al., 2012) . During robust emotional arousal, BLA 

activation leads to memory modulation which impairs the hippocampal dependent 

memory processes, resulting in a reliance on dorsal striatum dependent habit memory 

(Packard and Wingard, 2004, Wingard and Packard, 2008, Packard and Gabriele, 2009). 

Therefore NE and ENK could be involved in this process by affecting the excitability of 

certain pyramidal cell populations which connect with either hippocampal or striatal 

structures.   

Based on our results, these two systems appear to have opposite effects on the 

BLa neuronal activity since NET+ terminals mainly form symmetrical synapses and 

ENK+ terminals mainly form asymmetrical synapses in the BLa, which has been 

supported by previous electrophysiological and behavioral studies (McGaugh, 2004) .  

But, how these two systems affect each other is very complex. There is very limited 

synaptic convergence of NET and ENK inputs onto the same neuronal target in the BLa. 
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But these two systems show potentials for volume transmission: only half of the NET 

terminals form synapses and extrasynaptic adrenoceptors have been found in the 

amygdala (Farb et al., 2010, Zhang et al., 2013) ; ENK as a neuropeptide could diffuse 

for a long distance and reach extra-synaptic receptors, especially considering the widely 

spread distribution of MOR we found in chapter 4. Therefore, it is highly possible that 

these two systems could interact with each other even without convergence. The opioid 

system might serve as a tonic inhibitory control over the NE system. The appropriate 

memory modulation may involve a delicate balance of these two systems as well as their 

interactions with other neuromodulatory systems. To figure out the exact mechanism, we 

need more information about precise localization of their receptors and their 

morphological relationship with each other and other neuromodulatory systems in the 

BLa.  

6.5 FUTURE DIRECTIONS 

Our results suggest a complicated interaction between opioid and NE system, 

which includes both pre- and post-synaptic effects. Since both synapses and volume 

transmission affect NE functions, the localization of specific adrenoceptors and their 

morphological relationships to opioid receptors and inputs is critical to understanding 

how the NE system affects BLa neuron activity. It would be interesting to explore these 

relationships using Immunogold silver staining. Our results also suggest that ENK and 

MOR might locate in glutamatergic inputs to the BLa. Therefore it would be interesting 

to utilize PHAL tracing technique and immunohistochemistry for ENK or MOR to see 

the origin of these ENK or MOR contained glutamatergic inputs.  
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Figure 6.1 Schematic diagram of synaptology of NE and opioid system with pyramidal 

cells in the BLa. NET+ terminals (Red) mainly form symmetrical synapses with distal 

dendritic shafts and spines; ENK+ terminals (Yellow) mainly form asymmetrical 

synapses (containing postsynaptic density) with distal dendritic shafts and spines. Both 

ENK+ and ENK+ also contact with somata and proximal dendrites of BLa Neurons. 

There are limited convergences (black circle) of ENK+ and NET+ terminals onto either 

distal dendritic shafts or spines. MORs (black stars) are mainly present on terminals, 

distal dendritic shafts and spines.  Terminals containing MOR (Black) mainly form 

asymmetrical synapses (containing postsynaptic density) with MOR+ (black star) or 

unlabeled spines as well as MOR+ (black star) distal dendritic shafts. The BLa affects 

synaptic plasticity in other brain areas via its projection to those areas.  
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